R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(24,22,25,24,29,26,26,21,23,22,21,16,19,16,25,27,23,22,23,20,24,23,20,21,22,17,21,19,23,22,15,23,21,18,18,18,18,10,13,10,9,9,6,11,9,10,9,16,10,7,7,14,11,10,6,8,13,12,15,16,16) > par10 = 'FALSE' > par9 = '0' > par8 = '0' > par7 = '0' > par6 = '1' > par5 = '1' > par4 = '1' > par3 = '1' > par2 = '1' > par1 = '22' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 -0.6785 s.e. 0.1246 sigma^2 estimated as 22.24: log likelihood = -110.2, aic = 224.4 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 40 End = 61 Frequency = 1 [1] 8.5363447 9.1368849 6.3012969 5.7971704 3.7111144 2.6984199 [7] 0.9574345 -0.2893953 -1.8715167 -3.2261379 -4.7351212 -6.1393677 [13] -7.6146796 -9.0417726 -10.5015828 -11.9391939 -13.3918675 -14.8343209 [19] -16.2837088 -17.7283916 -19.1762669 -20.6219761 $se Time Series: Start = 40 End = 61 Frequency = 1 [1] 4.716388 7.816017 12.629374 17.514225 23.287854 29.362689 [7] 36.029771 43.051039 50.531981 58.367459 66.592934 75.157682 [13] 84.070255 93.303479 102.855787 112.710784 122.863421 133.302578 [19] 144.022329 155.014359 166.272842 177.791108 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 40 End = 61 Frequency = 1 [1] -0.7077764 -6.1825091 -18.4522769 -28.5307109 -41.9330791 [6] -54.8524499 -69.6609164 -84.6694310 -100.9141988 -117.6263583 [11] -135.2572724 -153.4484242 -172.3923800 -191.9165907 -212.0989258 [16] -232.8523297 -254.2041727 -276.1073744 -298.5674741 -321.5565359 [21] -345.0710375 -369.0925474 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 40 End = 61 Frequency = 1 [1] 17.78047 24.45628 31.05487 40.12505 49.35531 60.24929 71.57579 [8] 84.09064 97.17117 111.17408 125.78703 141.16969 157.16302 173.83305 [15] 191.09576 208.97394 227.42044 246.43873 266.00006 286.09975 306.71850 [22] 327.84860 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 24.0000000 22.0000000 25.0000000 24.0000000 29.0000000 26.0000000 [7] 26.0000000 21.0000000 23.0000000 22.0000000 21.0000000 16.0000000 [13] 19.0000000 16.0000000 25.0000000 27.0000000 23.0000000 22.0000000 [19] 23.0000000 20.0000000 24.0000000 23.0000000 20.0000000 21.0000000 [25] 22.0000000 17.0000000 21.0000000 19.0000000 23.0000000 22.0000000 [31] 15.0000000 23.0000000 21.0000000 18.0000000 18.0000000 18.0000000 [37] 18.0000000 10.0000000 13.0000000 8.5363447 9.1368849 6.3012969 [43] 5.7971704 3.7111144 2.6984199 0.9574345 -0.2893953 -1.8715167 [49] -3.2261379 -4.7351212 -6.1393677 -7.6146796 -9.0417726 -10.5015828 [55] -11.9391939 -13.3918675 -14.8343209 -16.2837088 -17.7283916 -19.1762669 [61] -20.6219761 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 40 End = 61 Frequency = 1 [1] 0.5525068 0.8554357 2.0042500 3.0211679 6.2751646 [6] 10.8814379 37.6315791 -148.7620588 -27.0005509 -18.0920533 [11] -14.0636176 -12.2419255 -11.0405506 -10.3191578 -9.7943128 [16] -9.4404014 -9.1744801 -8.9860924 -8.8445655 -8.7438479 [21] -8.6707618 -8.6214390 > postscript(file="/var/www/html/rcomp/tmp/1p8bf1260470548.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2drxi1260470548.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3g28z1260470548.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4iilg1260470548.tab") > > system("convert tmp/1p8bf1260470548.ps tmp/1p8bf1260470548.png") > system("convert tmp/2drxi1260470548.ps tmp/2drxi1260470548.png") > > > proc.time() user system elapsed 0.625 0.334 0.818