R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(1.4,1.2,1,1.7,2.4,2,2.1,2,1.8,2.7,2.3,1.9,2,2.3,2.8,2.4,2.3,2.7,2.7,2.9,3,2.2,2.3,2.8,2.8,2.8,2.2,2.6,2.8,2.5,2.4,2.3,1.9,1.7,2,2.1,1.7,1.8,1.8,1.8,1.3,1.3,1.3,1.2,1.4,2.2,2.9,3.1,3.5,3.6,4.4,4.1,5.1,5.8,5.9,5.4,5.5,4.8,3.2,2.7) > par10 = 'FALSE' > par9 = '0' > par8 = '0' > par7 = '0' > par6 = '0' > par5 = '12' > par4 = '0' > par3 = '1' > par2 = '1' > par1 = '24' > par1 <- as.numeric(par1) #cut off periods > par1 <- 28 > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par6 <- 3 > par7 <- as.numeric(par7) #q > par7 <- 3 > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 ma2 ma3 -0.1824 -0.5123 -0.6272 0.0487 0.0487 1.0000 s.e. 0.1603 0.1096 0.1716 0.2352 0.2289 0.2499 sigma^2 estimated as 0.06444: log likelihood = -4.99, aic = 23.99 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 33 End = 60 Frequency = 1 [1] 2.473242 2.570281 2.633686 2.463752 2.401407 2.460063 2.587884 2.573623 [9] 2.473956 2.419273 2.489249 2.567008 2.551275 2.470422 2.444460 2.500482 [17] 2.554274 2.532047 2.473408 2.461752 2.507858 2.542197 2.519625 2.477234 [25] 2.474992 2.511274 2.532392 2.511360 $se Time Series: Start = 33 End = 60 Frequency = 1 [1] 0.2651186 0.3501509 0.3674322 0.4324988 0.5204257 0.5970499 0.6256772 [8] 0.6474570 0.6845723 0.7430033 0.7875944 0.8118626 0.8318775 0.8642610 [15] 0.9063491 0.9398600 0.9609108 0.9809453 1.0093710 1.0429311 1.0699548 [22] 1.0894384 1.1091114 1.1346710 1.1626466 1.1857713 1.2041886 1.2233656 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 33 End = 60 Frequency = 1 [1] 1.9536098 1.8839850 1.9135190 1.6160543 1.3813728 1.2898457 1.3615571 [8] 1.3046075 1.1321947 0.9629864 0.9455638 0.9757575 0.9207952 0.7764706 [15] 0.6680152 0.6583562 0.6708884 0.6093937 0.4950408 0.4176072 0.4107466 [22] 0.4068977 0.3457665 0.2532787 0.1962047 0.1871620 0.1721821 0.1135631 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 33 End = 60 Frequency = 1 [1] 2.992875 3.256576 3.353853 3.311450 3.421441 3.630281 3.814212 3.842639 [9] 3.815718 3.875559 4.032934 4.158259 4.181755 4.164374 4.220904 4.342607 [17] 4.437659 4.454699 4.451775 4.505897 4.604969 4.677496 4.693483 4.701189 [25] 4.753779 4.835386 4.892601 4.909156 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 1.400000 1.200000 1.000000 1.700000 2.400000 2.000000 2.100000 2.000000 [9] 1.800000 2.700000 2.300000 1.900000 2.000000 2.300000 2.800000 2.400000 [17] 2.300000 2.700000 2.700000 2.900000 3.000000 2.200000 2.300000 2.800000 [25] 2.800000 2.800000 2.200000 2.600000 2.800000 2.500000 2.400000 2.300000 [33] 2.473242 2.570281 2.633686 2.463752 2.401407 2.460063 2.587884 2.573623 [41] 2.473956 2.419273 2.489249 2.567008 2.551275 2.470422 2.444460 2.500482 [49] 2.554274 2.532047 2.473408 2.461752 2.507858 2.542197 2.519625 2.477234 [57] 2.474992 2.511274 2.532392 2.511360 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 33 End = 60 Frequency = 1 [1] 0.1071948 0.1362306 0.1395125 0.1755448 0.2167170 0.2426969 0.2417717 [8] 0.2515741 0.2767115 0.3071184 0.3163984 0.3162680 0.3260634 0.3498434 [15] 0.3707769 0.3758716 0.3761973 0.3874120 0.4080892 0.4236540 0.4266409 [22] 0.4285421 0.4401891 0.4580395 0.4697577 0.4721792 0.4755143 0.4871328 > postscript(file="/var/www/html/rcomp/tmp/17wz21260476820.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2u6iv1260476820.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3hwa61260476820.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/456r41260476820.tab") > > system("convert tmp/17wz21260476820.ps tmp/17wz21260476820.png") > system("convert tmp/2u6iv1260476820.ps tmp/2u6iv1260476820.png") > > > proc.time() user system elapsed 0.728 0.324 0.843