R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(149,139,135,130,127,122,117,112,113,149,157,157,147,137,132,125,123,117,114,111,112,144,150,149,134,123,116,117,111,105,102,95,93,124,130,124,115,106,105,105,101,95,93,84,87,116,120,117,109,105,107,109,109,108,107,99,103,131,137,135) > par10 = 'FALSE' > par9 = '0' > par8 = '0' > par7 = '0' > par6 = '0' > par5 = '12' > par4 = '0' > par3 = '1' > par2 = '1' > par1 = '13' > par1 <- as.numeric(par1) #cut off periods > par1 <- 28 > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par6 <- 3 > par7 <- as.numeric(par7) #q > par7 <- 3 > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 ma2 ma3 0.934 -0.3398 -0.0273 -0.6825 0.1001 -0.246 s.e. 0.728 1.0803 0.6499 0.7082 0.9354 0.482 sigma^2 estimated as 82.7: log likelihood = -112.89, aic = 239.78 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 33 End = 60 Frequency = 1 [1] 98.49308 104.09300 110.95581 115.36780 117.00417 116.84634 116.02261 [8] 115.26223 114.83621 114.71911 114.77523 114.87905 114.96015 114.99909 [15] 115.00507 114.99522 114.98292 114.97462 114.97131 114.97138 114.97279 [22] 114.97418 114.97499 114.97524 114.97516 114.97498 114.97483 114.97476 $se Time Series: Start = 33 End = 60 Frequency = 1 [1] 9.094259 14.568978 18.461388 20.134583 20.723009 20.953605 21.110708 [8] 21.292268 21.530516 21.818141 22.129250 22.440960 22.742197 23.031515 [15] 23.311847 23.586656 23.858263 24.127646 24.394896 24.659752 24.921954 [22] 25.181386 25.438069 25.692100 25.943598 26.192673 26.439409 26.683876 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 33 End = 60 Frequency = 1 [1] 80.66833 75.53781 74.77149 75.90402 76.38707 75.77727 74.64562 73.52938 [9] 72.63639 71.95556 71.40190 70.89477 70.38544 69.85732 69.31385 68.76537 [17] 68.22073 67.68443 67.15732 66.63827 66.12576 65.61866 65.11638 64.61873 [25] 64.12571 63.63734 63.15359 62.67436 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 33 End = 60 Frequency = 1 [1] 116.3178 132.6482 147.1401 154.8316 157.6213 157.9154 157.3996 156.9951 [9] 157.0360 157.4827 158.1486 158.8633 159.5349 160.1409 160.6963 161.2251 [17] 161.7451 162.2648 162.7853 163.3045 163.8198 164.3297 164.8336 165.3318 [25] 165.8246 166.3126 166.7961 167.2752 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 149.00000 139.00000 135.00000 130.00000 127.00000 122.00000 117.00000 [8] 112.00000 113.00000 149.00000 157.00000 157.00000 147.00000 137.00000 [15] 132.00000 125.00000 123.00000 117.00000 114.00000 111.00000 112.00000 [22] 144.00000 150.00000 149.00000 134.00000 123.00000 116.00000 117.00000 [29] 111.00000 105.00000 102.00000 95.00000 98.49308 104.09300 110.95581 [36] 115.36780 117.00417 116.84634 116.02261 115.26223 114.83621 114.71911 [43] 114.77523 114.87905 114.96015 114.99909 115.00507 114.99522 114.98292 [50] 114.97462 114.97131 114.97138 114.97279 114.97418 114.97499 114.97524 [57] 114.97516 114.97498 114.97483 114.97476 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 33 End = 60 Frequency = 1 [1] 0.0923340 0.1399612 0.1663851 0.1745252 0.1771134 0.1793262 0.1819534 [8] 0.1847289 0.1874889 0.1901875 0.1928051 0.1953442 0.1978268 0.2002756 [15] 0.2027028 0.2051099 0.2074940 0.2098519 0.2121825 0.2144860 0.2167639 [22] 0.2190177 0.2212487 0.2234577 0.2256452 0.2278119 0.2299582 0.2320847 > postscript(file="/var/www/html/rcomp/tmp/1ntg41260489330.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2md2i1260489330.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3tegm1260489330.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4nqi71260489330.tab") > system("convert tmp/1ntg41260489330.ps tmp/1ntg41260489330.png") > system("convert tmp/2md2i1260489330.ps tmp/2md2i1260489330.png") > > > proc.time() user system elapsed 0.762 0.321 0.926