R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(392,394,392,396,392,396,419,421,420,418,410,418,426,428,430,424,423,427,441,449,452,462,455,461,461,463,462,456,455,456,472,472,471,465,459,465,468,467,463,460,462,461,476,476,471,453,443,442,444,438,427,424,416,406,431,434,418,412,404,409,412,406,398,397,385,390,413,413,401,397,397,409) > par10 = 'FALSE' > par9 = '1' > par8 = '2' > par7 = '2' > par6 = '3' > par5 = '1' > par4 = '1' > par3 = '1' > par2 = '1' > par1 = '24' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 ma2 sar1 sar2 sma1 0.4054 -0.1541 -0.5003 -0.0084 -0.6678 -1.2699 -0.5665 0.0458 s.e. 1.2377 1.2679 1.0105 0.5964 0.4721 0.4766 0.2898 0.4672 sigma^2 estimated as 36.42: log likelihood = -149.68, aic = 317.36 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 49 End = 72 Frequency = 1 [1] 447.3554 456.0698 454.4422 449.3291 440.6467 436.3610 437.1555 439.7682 [9] 441.2811 438.8362 434.2737 430.1150 428.1679 428.3852 428.7401 427.8079 [17] 425.2382 422.0937 419.6702 418.3965 417.7966 416.9209 415.2508 412.9748 $se Time Series: Start = 49 End = 72 Frequency = 1 [1] 6.034880 9.302149 11.740906 13.233524 13.883738 14.972249 16.511756 [8] 18.888730 21.395364 23.521638 25.354512 27.055178 28.998983 31.277770 [15] 33.781470 36.298455 38.675922 40.975209 43.316054 45.809223 48.463812 [22] 51.197742 53.929072 56.628699 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 49 End = 72 Frequency = 1 [1] 435.5271 437.8376 431.4300 423.3914 413.4346 407.0154 404.7925 402.7463 [9] 399.3462 392.7337 384.5788 377.0868 371.3299 367.0807 362.5285 356.6629 [17] 349.4334 341.7823 334.7708 328.6104 322.8076 316.5734 309.5499 301.9825 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 49 End = 72 Frequency = 1 [1] 459.1838 474.3020 477.4544 475.2668 467.8588 465.7066 469.5185 476.7901 [9] 483.2160 484.9386 483.9685 483.1431 485.0059 489.6896 494.9518 498.9529 [17] 501.0430 502.4051 504.5697 508.1825 512.7857 517.2685 520.9518 523.9670 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 392.0000 394.0000 392.0000 396.0000 392.0000 396.0000 419.0000 421.0000 [9] 420.0000 418.0000 410.0000 418.0000 426.0000 428.0000 430.0000 424.0000 [17] 423.0000 427.0000 441.0000 449.0000 452.0000 462.0000 455.0000 461.0000 [25] 461.0000 463.0000 462.0000 456.0000 455.0000 456.0000 472.0000 472.0000 [33] 471.0000 465.0000 459.0000 465.0000 468.0000 467.0000 463.0000 460.0000 [41] 462.0000 461.0000 476.0000 476.0000 471.0000 453.0000 443.0000 442.0000 [49] 447.3554 456.0698 454.4422 449.3291 440.6467 436.3610 437.1555 439.7682 [57] 441.2811 438.8362 434.2737 430.1150 428.1679 428.3852 428.7401 427.8079 [65] 425.2382 422.0937 419.6702 418.3965 417.7966 416.9209 415.2508 412.9748 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 49 End = 72 Frequency = 1 [1] 0.01349012 0.02039633 0.02583586 0.02945174 0.03150764 0.03431161 [7] 0.03777090 0.04295156 0.04848466 0.05360005 0.05838372 0.06290220 [13] 0.06772806 0.07301319 0.07879241 0.08484756 0.09095120 0.09707610 [19] 0.10321450 0.10948760 0.11599857 0.12279964 0.12987107 0.13712387 > postscript(file="/var/www/html/rcomp/tmp/1g7af1260492966.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2qmhx1260492966.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3h41d1260492966.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4e0w61260492966.tab") > > system("convert tmp/1g7af1260492966.ps tmp/1g7af1260492966.png") > system("convert tmp/2qmhx1260492966.ps tmp/2qmhx1260492966.png") > > > proc.time() user system elapsed 0.784 0.324 1.130