R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(10,9.2,9.2,9.5,9.6,9.5,9.1,8.9,9,10.1,10.3,10.2,9.6,9.2,9.3,9.4,9.4,9.2,9,9,9,9.8,10,9.8,9.3,9,9,9.1,9.1,9.1,9.2,8.8,8.3,8.4,8.1,7.7,7.9,7.9,8,7.9,7.6,7.1,6.8,6.5,6.9,8.2,8.7,8.3,7.9,7.5,7.8,8.3,8.4,8.2,7.7,7.2,7.3,8.1,8.5) > par10 = 'FALSE' > par9 = '0' > par8 = '0' > par7 = '0' > par6 = '0' > par5 = '12' > par4 = '1' > par3 = '2' > par2 = '1' > par1 = '24' > par1 <- as.numeric(par1) #cut off periods > par1 <- 28 > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par6 <- 3 > par7 <- as.numeric(par7) #q > par7 <- 3 > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 ma2 ma3 -0.2389 -0.0148 -0.558 -0.3392 -0.8998 0.2549 s.e. NaN NaN NaN NaN NaN 0.2459 sigma^2 estimated as 0.02162: log likelihood = 3.81, aic = 6.39 Warning messages: 1: In arima(x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, : possible convergence problem: optim gave code=1 2: In sqrt(diag(x$var.coef)) : NaNs produced > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 32 End = 59 Frequency = 1 [1] 9.245368 9.102771 9.803382 10.038533 9.945788 9.509720 9.207862 [8] 9.182128 9.287244 9.322054 9.362637 9.484188 9.538998 9.405797 [15] 10.126613 10.386145 10.316649 9.898007 9.612654 9.604361 9.729958 [22] 9.785023 9.845347 9.985069 10.058560 9.944226 10.684735 10.963474 $se Time Series: Start = 32 End = 59 Frequency = 1 [1] 0.1507881 0.2678654 0.3211024 0.3400163 0.3539540 0.3803505 0.4194369 [8] 0.4580748 0.4879611 0.5132804 0.5395558 0.5696472 0.6691989 0.7925624 [15] 0.8771406 0.9299401 0.9772543 1.0381467 1.1102601 1.1812683 1.2434250 [22] 1.3009024 1.3592318 1.4212266 1.5415441 1.6833040 1.7959337 1.8804850 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 32 End = 59 Frequency = 1 [1] 8.949823 8.577755 9.174021 9.372101 9.252038 8.764233 8.385766 8.284301 [9] 8.330841 8.316025 8.305108 8.367679 8.227369 7.852374 8.407418 8.563462 [17] 8.401231 7.863239 7.436544 7.289075 7.292845 7.235254 7.181253 7.199465 [25] 7.037133 6.644951 7.164705 7.277724 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 32 End = 59 Frequency = 1 [1] 9.540912 9.627787 10.432742 10.704965 10.639538 10.255207 10.029958 [8] 10.079954 10.243648 10.328084 10.420166 10.600696 10.850628 10.959219 [15] 11.845809 12.208827 12.232068 11.932774 11.788763 11.919647 12.167071 [22] 12.334791 12.509441 12.770673 13.079986 13.243502 14.204765 14.649225 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 10.000000 9.200000 9.200000 9.500000 9.600000 9.500000 9.100000 [8] 8.900000 9.000000 10.100000 10.300000 10.200000 9.600000 9.200000 [15] 9.300000 9.400000 9.400000 9.200000 9.000000 9.000000 9.000000 [22] 9.800000 10.000000 9.800000 9.300000 9.000000 9.000000 9.100000 [29] 9.100000 9.100000 9.200000 9.245368 9.102771 9.803382 10.038533 [36] 9.945788 9.509720 9.207862 9.182128 9.287244 9.322054 9.362637 [43] 9.484188 9.538998 9.405797 10.126613 10.386145 10.316649 9.898007 [50] 9.612654 9.604361 9.729958 9.785023 9.845347 9.985069 10.058560 [57] 9.944226 10.684735 10.963474 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 32 End = 59 Frequency = 1 [1] 0.01630958 0.02942679 0.03275425 0.03387112 0.03558833 0.03999597 [7] 0.04555204 0.04988765 0.05254099 0.05506087 0.05762861 0.06006284 [13] 0.07015400 0.08426319 0.08661737 0.08953661 0.09472594 0.10488442 [19] 0.11549985 0.12299292 0.12779346 0.13294832 0.13805830 0.14233518 [25] 0.15325695 0.16927450 0.16808407 0.17152273 > postscript(file="/var/www/html/rcomp/tmp/1822k1260529692.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2swk11260529692.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3uq571260529692.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4h29u1260529692.tab") > system("convert tmp/1822k1260529692.ps tmp/1822k1260529692.png") > system("convert tmp/2swk11260529692.ps tmp/2swk11260529692.png") > > > proc.time() user system elapsed 1.134 0.326 1.276