R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(100 + ,108.1560276 + ,114.0150276 + ,102.1880309 + ,110.3672031 + ,96.8602511 + ,94.1944583 + ,99.51621961 + ,94.06333487 + ,97.5541476 + ,78.15062422 + ,81.2434643 + ,92.36262465 + ,96.06324371 + ,114.0523777 + ,110.6616666 + ,104.9171949 + ,90.00187193 + ,95.7008067 + ,86.02741157 + ,84.85287668 + ,100.04328 + ,80.91713823 + ,74.06539709 + ,77.30281369 + ,97.23043249 + ,90.75515676 + ,100.5614455 + ,92.01293267 + ,99.24012138 + ,105.8672755 + ,90.9920463 + ,93.30624423 + ,91.17419413 + ,77.33295039 + ,91.1277721 + ,85.01249943 + ,83.90390242 + ,104.8626302 + ,110.9039108 + ,95.43714373 + ,111.6238727 + ,108.8925403 + ,96.17511682 + ,101.9740205 + ,99.11953031 + ,86.78158147 + ,118.4195003 + ,118.7441447 + ,106.5296192 + ,134.7772694 + ,104.6778714 + ,105.2954304 + ,139.4139849 + ,103.6060491 + ,99.78182974 + ,103.4610301 + ,120.0594945 + ,96.71377168 + ,107.1308929 + ,105.3608372 + ,111.6942359 + ,132.0519998 + ,126.8037879 + ,154.4824253 + ,141.5570984 + ,109.9506882 + ,127.904198 + ,133.0888617 + ,120.0796299 + ,117.5557142 + ,143.0362309 + ,159.982927 + ,128.5991124 + ,149.7373327 + ,126.8169313 + ,140.9639674 + ,137.6691981 + ,117.9402337 + ,122.3095247 + ,127.7804207 + ,136.1677176 + ,116.2405856 + ,123.1576893 + ,116.3400234 + ,108.6119282 + ,125.8982264 + ,112.8003105 + ,107.5182447 + ,135.0955413 + ,115.5096488 + ,115.8640759 + ,104.5883906 + ,163.7213386 + ,113.4482275 + ,98.0428844 + ,116.7868521 + ,126.5330444 + ,113.0336597 + ,124.3392163 + ,109.8298759 + ,124.4434777 + ,111.5039454 + ,102.0350019 + ,116.8726598 + ,112.2073122 + ,101.1513902 + ,124.4255108) > par10 = 'FALSE' > par9 = '0' > par8 = '0' > par7 = '1' > par6 = '0' > par5 = '12' > par4 = '1' > par3 = '1' > par2 = '1' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ma1 -0.6960 s.e. 0.0948 sigma^2 estimated as 238.6: log likelihood = -345.31, aic = 694.63 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 97 End = 108 Frequency = 1 [1] 107.34847 99.62037 116.90667 103.80875 98.52669 126.10399 106.51809 [8] 106.87252 95.59683 154.72978 104.45667 89.05133 $se Time Series: Start = 97 End = 108 Frequency = 1 [1] 15.44782 16.14574 16.81472 17.45808 18.07856 18.67844 19.25965 19.82382 [9] 20.37237 20.90654 21.42739 21.93589 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 97 End = 108 Frequency = 1 [1] 77.07074 67.97472 83.94982 69.59092 63.09271 89.49424 68.76918 [8] 68.01783 55.66698 113.75296 62.45898 46.05699 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 97 End = 108 Frequency = 1 [1] 137.6262 131.2660 149.8635 138.0266 133.9607 162.7137 144.2670 145.7272 [9] 135.5267 195.7066 146.4544 132.0457 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 100.00000 108.15603 114.01503 102.18803 110.36720 96.86025 94.19446 [8] 99.51622 94.06333 97.55415 78.15062 81.24346 92.36262 96.06324 [15] 114.05238 110.66167 104.91719 90.00187 95.70081 86.02741 84.85288 [22] 100.04328 80.91714 74.06540 77.30281 97.23043 90.75516 100.56145 [29] 92.01293 99.24012 105.86728 90.99205 93.30624 91.17419 77.33295 [36] 91.12777 85.01250 83.90390 104.86263 110.90391 95.43714 111.62387 [43] 108.89254 96.17512 101.97402 99.11953 86.78158 118.41950 118.74414 [50] 106.52962 134.77727 104.67787 105.29543 139.41398 103.60605 99.78183 [57] 103.46103 120.05949 96.71377 107.13089 105.36084 111.69424 132.05200 [64] 126.80379 154.48243 141.55710 109.95069 127.90420 133.08886 120.07963 [71] 117.55571 143.03623 159.98293 128.59911 149.73733 126.81693 140.96397 [78] 137.66920 117.94023 122.30952 127.78042 136.16772 116.24059 123.15769 [85] 116.34002 108.61193 125.89823 112.80031 107.51824 135.09554 115.50965 [92] 115.86408 104.58839 163.72134 113.44823 98.04288 107.34847 99.62037 [99] 116.90667 103.80875 98.52669 126.10399 106.51809 106.87252 95.59683 [106] 154.72978 104.45667 89.05133 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 97 End = 108 Frequency = 1 [1] 0.1439035 0.1620727 0.1438303 0.1681754 0.1834890 0.1481194 0.1808110 [8] 0.1854903 0.2131072 0.1351165 0.2051319 0.2463286 > postscript(file="/var/www/html/rcomp/tmp/1hpix1260537933.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2bpin1260537933.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3z7vu1260537933.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4z7jb1260537933.tab") > system("convert tmp/1hpix1260537933.ps tmp/1hpix1260537933.png") > system("convert tmp/2bpin1260537933.ps tmp/2bpin1260537933.png") > > > proc.time() user system elapsed 0.606 0.331 0.737