R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(6.9,6.8,6.7,6.6,6.5,6.5,7.0,7.5,7.6,7.6,7.6,7.8,8.0,8.0,8.0,7.9,7.9,8.0,8.5,9.2,9.4,9.5,9.5,9.6,9.7,9.7,9.6,9.5,9.4,9.3,9.6,10.2,10.2,10.1,9.9,9.8,9.8,9.7,9.5,9.3,9.1,9.0,9.5,10.0,10.2,10.1,10.0,9.9,10.0,9.9,9.7,9.5,9.2,9.0,9.3,9.8,9.8,9.6,9.4,9.3,9.2,9.2,9.0,8.8,8.7,8.7,9.1,9.7,9.8,9.6,9.4,9.4,9.5,9.4,9.3,9.2,9.0,8.9,9.2,9.8,9.9,9.6,9.2,9.1,9.1,9.0,8.9,8.7,8.5,8.3,8.5,8.7,8.4,8.1,7.8,7.7,7.5,7.2,6.8,6.7,6.4,6.3,6.8,7.3,7.1,7.0,6.8,6.6,6.3,6.1,6.1,6.3,6.3,6.0,6.2,6.4,6.8,7.5,7.5,7.6,7.6,7.4,7.3,7.1,6.9,6.8,7.5,7.6,7.8,8.0,8.1,8.2,8.3,8.2,8.0,7.9,7.6,7.6,8.3,8.4,8.4,8.4,8.4,8.6,8.9,8.8,8.3,7.5,7.2,7.4,8.8,9.3,9.3,8.7,8.2,8.3,8.5,8.6,8.5,8.2,8.1,7.9,8.6,8.7,8.7,8.5,8.4,8.5,8.7,8.7,8.6,8.5,8.3,8.0,8.2,8.1,8.1,8.0,7.9,7.9) > par10 = 'FALSE' > par9 = '1' > par8 = '1' > par7 = '0' > par6 = '3' > par5 = '12' > par4 = '1' > par3 = '1' > par2 = '1' > par1 = '12' > par1 <- as.numeric(par1) #cut off periods > par1 <- 28 > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par6 <- 3 > par7 <- as.numeric(par7) #q > par7 <- 3 > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 ma2 ma3 sar1 sma1 -0.0264 -0.0545 -0.4811 0.5618 0.2959 0.2972 0.0828 -0.4730 s.e. 0.4348 0.2988 0.2774 0.4443 0.2252 0.2507 0.3172 0.3032 sigma^2 estimated as 0.02552: log likelihood = 56.32, aic = -94.64 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 153 End = 180 Frequency = 1 [1] 9.356166 9.187114 9.023894 9.186768 9.507065 9.461925 9.074627 [8] 8.482219 8.175536 8.283402 9.408665 9.785271 9.841623 9.765753 [15] 9.660046 9.814285 10.080973 10.007962 9.636537 9.089516 8.796775 [22] 8.891948 9.980237 10.340300 10.400045 10.338989 10.240716 10.392159 $se Time Series: Start = 153 End = 180 Frequency = 1 [1] 0.1597583 0.2927396 0.4062077 0.4752088 0.5173038 0.5510748 0.5895425 [8] 0.6328378 0.6752011 0.7116230 0.7433441 0.7732866 0.8354523 0.9149876 [15] 0.9968732 1.0637788 1.1178179 1.1668135 1.2176160 1.2701793 1.3215140 [22] 1.3690024 1.4132677 1.4559620 1.5227885 1.6023525 1.6845483 1.7564812 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 153 End = 180 Frequency = 1 [1] 9.043039 8.613344 8.227727 8.255359 8.493149 8.381818 7.919123 7.241857 [9] 6.852141 6.888621 7.951711 8.269629 8.204137 7.972377 7.706174 7.729278 [17] 7.890050 7.721008 7.250010 6.599964 6.206607 6.208703 7.210233 7.486614 [25] 7.415380 7.198378 6.939002 6.949455 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 153 End = 180 Frequency = 1 [1] 9.669292 9.760883 9.820061 10.118177 10.520980 10.542031 10.230130 [8] 9.722581 9.498930 9.678183 10.865619 11.300912 11.479110 11.559129 [15] 11.613917 11.899291 12.271896 12.294917 12.023065 11.579067 11.386942 [22] 11.575193 12.750242 13.193985 13.384710 13.479600 13.542431 13.834862 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 6.900000 6.800000 6.700000 6.600000 6.500000 6.500000 7.000000 [8] 7.500000 7.600000 7.600000 7.600000 7.800000 8.000000 8.000000 [15] 8.000000 7.900000 7.900000 8.000000 8.500000 9.200000 9.400000 [22] 9.500000 9.500000 9.600000 9.700000 9.700000 9.600000 9.500000 [29] 9.400000 9.300000 9.600000 10.200000 10.200000 10.100000 9.900000 [36] 9.800000 9.800000 9.700000 9.500000 9.300000 9.100000 9.000000 [43] 9.500000 10.000000 10.200000 10.100000 10.000000 9.900000 10.000000 [50] 9.900000 9.700000 9.500000 9.200000 9.000000 9.300000 9.800000 [57] 9.800000 9.600000 9.400000 9.300000 9.200000 9.200000 9.000000 [64] 8.800000 8.700000 8.700000 9.100000 9.700000 9.800000 9.600000 [71] 9.400000 9.400000 9.500000 9.400000 9.300000 9.200000 9.000000 [78] 8.900000 9.200000 9.800000 9.900000 9.600000 9.200000 9.100000 [85] 9.100000 9.000000 8.900000 8.700000 8.500000 8.300000 8.500000 [92] 8.700000 8.400000 8.100000 7.800000 7.700000 7.500000 7.200000 [99] 6.800000 6.700000 6.400000 6.300000 6.800000 7.300000 7.100000 [106] 7.000000 6.800000 6.600000 6.300000 6.100000 6.100000 6.300000 [113] 6.300000 6.000000 6.200000 6.400000 6.800000 7.500000 7.500000 [120] 7.600000 7.600000 7.400000 7.300000 7.100000 6.900000 6.800000 [127] 7.500000 7.600000 7.800000 8.000000 8.100000 8.200000 8.300000 [134] 8.200000 8.000000 7.900000 7.600000 7.600000 8.300000 8.400000 [141] 8.400000 8.400000 8.400000 8.600000 8.900000 8.800000 8.300000 [148] 7.500000 7.200000 7.400000 8.800000 9.300000 9.356166 9.187114 [155] 9.023894 9.186768 9.507065 9.461925 9.074627 8.482219 8.175536 [162] 8.283402 9.408665 9.785271 9.841623 9.765753 9.660046 9.814285 [169] 10.080973 10.007962 9.636537 9.089516 8.796775 8.891948 9.980237 [176] 10.340300 10.400045 10.338989 10.240716 10.392159 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 153 End = 180 Frequency = 1 [1] 0.01707519 0.03186415 0.04501468 0.05172752 0.05441257 0.05824130 [7] 0.06496604 0.07460758 0.08258800 0.08590951 0.07900632 0.07902558 [13] 0.08488969 0.09369351 0.10319550 0.10839086 0.11088393 0.11658852 [19] 0.12635410 0.13974114 0.15022710 0.15395979 0.14160662 0.14080462 [25] 0.14642134 0.15498154 0.16449516 0.16901986 > postscript(file="/var/www/html/rcomp/tmp/1qvzu1260543018.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2g0pt1260543019.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3f0y61260543019.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4fsxf1260543019.tab") > system("convert tmp/1qvzu1260543018.ps tmp/1qvzu1260543018.png") > system("convert tmp/2g0pt1260543019.ps tmp/2g0pt1260543019.png") > > > proc.time() user system elapsed 3.172 0.332 5.709