R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(8.9,8.8,8.3,7.5,7.2,7.4,8.8,9.3,9.3,8.7,8.2,8.3,8.5,8.6,8.5,8.2,8.1,7.9,8.6,8.7,8.7,8.5,8.4,8.5,8.7,8.7,8.6,8.5,8.3,8,8.2,8.1,8.1,8,7.9,7.9,8,8,7.9,8,7.7,7.2,7.5,7.3,7,7,7,7.2,7.3,7.1,6.8,6.4,6.1,6.5,7.7,7.9,7.5,6.9,6.6,6.9) > par10 = 'FALSE' > par9 = '1' > par8 = '1' > par7 = '1' > par6 = '2' > par5 = '12' > par4 = '1' > par3 = '1' > par2 = '1' > par1 = '24' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ma1 sar1 sma1 1.2516 -0.7984 -0.6348 0.9939 -0.8944 s.e. 0.1535 0.1191 0.2585 0.1322 1.1091 sigma^2 estimated as 0.01643: log likelihood = 8.54, aic = -5.08 Warning message: In arima(x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, : possible convergence problem: optim gave code=1 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 37 End = 60 Frequency = 1 [1] 8.153408 8.279413 8.360149 8.475862 8.250984 7.734508 7.526047 7.260145 [9] 7.304806 7.387490 7.391459 7.302991 7.535937 7.686411 7.879381 8.205587 [17] 8.004900 7.337610 6.764645 6.334393 6.391007 6.614236 6.696084 6.520577 $se Time Series: Start = 37 End = 60 Frequency = 1 [1] 0.1481198 0.2788957 0.3639144 0.3969722 0.4016558 0.3981857 0.3921700 [8] 0.3918868 0.4091743 0.4397661 0.4673409 0.4833861 0.5580037 0.6664750 [15] 0.7622409 0.8166541 0.8368414 0.8390550 0.8368797 0.8455618 0.8765359 [22] 0.9240570 0.9708147 1.0050695 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 37 End = 60 Frequency = 1 [1] 7.863093 7.732778 7.646877 7.697797 7.463739 6.954064 6.757393 6.492047 [9] 6.502824 6.525548 6.475471 6.355554 6.442250 6.380120 6.385389 6.604945 [17] 6.364691 5.693062 5.124361 4.677092 4.672997 4.803084 4.793287 4.550641 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 37 End = 60 Frequency = 1 [1] 8.443723 8.826049 9.073422 9.253928 9.038229 8.514952 8.294700 8.028243 [9] 8.106787 8.249431 8.307447 8.250428 8.629624 8.992703 9.373373 9.806229 [17] 9.645109 8.982158 8.404930 7.991694 8.109018 8.425387 8.598880 8.490513 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 8.900000 8.800000 8.300000 7.500000 7.200000 7.400000 8.800000 9.300000 [9] 9.300000 8.700000 8.200000 8.300000 8.500000 8.600000 8.500000 8.200000 [17] 8.100000 7.900000 8.600000 8.700000 8.700000 8.500000 8.400000 8.500000 [25] 8.700000 8.700000 8.600000 8.500000 8.300000 8.000000 8.200000 8.100000 [33] 8.100000 8.000000 7.900000 7.900000 8.153408 8.279413 8.360149 8.475862 [41] 8.250984 7.734508 7.526047 7.260145 7.304806 7.387490 7.391459 7.302991 [49] 7.535937 7.686411 7.879381 8.205587 8.004900 7.337610 6.764645 6.334393 [57] 6.391007 6.614236 6.696084 6.520577 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 37 End = 60 Frequency = 1 [1] 0.01816662 0.03368544 0.04352965 0.04683561 0.04867974 0.05148171 [7] 0.05210837 0.05397783 0.05601440 0.05952848 0.06322715 0.06619016 [13] 0.07404570 0.08670822 0.09673868 0.09952415 0.10454115 0.11434990 [19] 0.12371376 0.13348742 0.13715144 0.13970731 0.14498245 0.15413812 > postscript(file="/var/www/html/rcomp/tmp/1vvv11260544247.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2r75m1260544247.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3spbb1260544247.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4k63z1260544247.tab") > > system("convert tmp/1vvv11260544247.ps tmp/1vvv11260544247.png") > system("convert tmp/2r75m1260544247.ps tmp/2r75m1260544247.png") > > > proc.time() user system elapsed 1.536 0.337 1.723