R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(79.8,83.4,113.6,112.9,104,109.9,99,106.3,128.9,111.1,102.9,130,87,87.5,117.6,103.4,110.8,112.6,102.5,112.4,135.6,105.1,127.7,137,91,90.5,122.4,123.3,124.3,120,118.1,119,142.7,123.6,129.6,151.6,110.4,99.2,130.5,136.2,129.7,128,121.6,135.8,143.8,147.5,136.2,156.6,123.3,104.5,139.8,136.5,112.1,118.5,94.4,102.3,111.4,99.2,87.8,115.8) > par10 = 'TRUE' > par9 = '0' > par8 = '0' > par7 = '0' > par6 = '3' > par5 = '12' > par4 = '1' > par3 = '1' > par2 = '1' > par1 = '24' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 -0.9570 -0.6238 -0.2176 s.e. 0.2081 0.2586 0.2177 sigma^2 estimated as 61.51: log likelihood = -80.51, aic = 169.03 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 37 End = 60 Frequency = 1 [1] 101.3203 100.6060 132.6173 134.4756 134.5357 130.5132 128.7254 129.5495 [9] 153.1918 134.1699 140.1476 162.1328 111.8642 111.1534 143.1577 145.0181 [17] 145.0798 141.0560 139.2680 140.0927 163.7348 144.7128 150.6906 172.6758 $se Time Series: Start = 37 End = 60 Frequency = 1 [1] 7.843093 7.850344 8.278555 8.953797 9.401292 9.702998 10.160820 [8] 10.549186 10.895610 11.252014 11.604198 11.933113 15.989377 16.296439 [15] 17.177035 18.265416 19.125464 19.820786 20.656890 21.412746 22.114968 [22] 22.815947 23.502686 24.157222 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 37 End = 60 Frequency = 1 [1] 85.94780 85.21931 116.39134 116.92619 116.10918 111.49534 108.81021 [8] 108.87305 131.83639 112.11599 117.40342 138.74388 80.52499 79.21235 [15] 109.49066 109.21790 107.59387 102.20723 98.78048 98.12369 120.38944 [22] 99.99353 104.62537 125.32762 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 37 End = 60 Frequency = 1 [1] 116.6927 115.9927 148.8433 152.0251 152.9622 149.5311 148.6406 150.2259 [9] 174.5472 156.2239 162.8919 185.5217 143.2034 143.0944 176.8246 180.8183 [17] 182.5657 179.9047 179.7555 182.0617 207.0801 189.4320 196.7559 220.0239 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 79.8000 83.4000 113.6000 112.9000 104.0000 109.9000 99.0000 106.3000 [9] 128.9000 111.1000 102.9000 130.0000 87.0000 87.5000 117.6000 103.4000 [17] 110.8000 112.6000 102.5000 112.4000 135.6000 105.1000 127.7000 137.0000 [25] 91.0000 90.5000 122.4000 123.3000 124.3000 120.0000 118.1000 119.0000 [33] 142.7000 123.6000 129.6000 151.6000 101.3203 100.6060 132.6173 134.4756 [41] 134.5357 130.5132 128.7254 129.5495 153.1918 134.1699 140.1476 162.1328 [49] 111.8642 111.1534 143.1577 145.0181 145.0798 141.0560 139.2680 140.0927 [57] 163.7348 144.7128 150.6906 172.6758 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 37 End = 60 Frequency = 1 [1] 0.07740893 0.07803058 0.06242439 0.06658305 0.06987953 0.07434495 [7] 0.07893406 0.08142980 0.07112398 0.08386390 0.08279980 0.07360086 [13] 0.14293564 0.14661219 0.11998685 0.12595265 0.13182722 0.14051717 [19] 0.14832476 0.15284701 0.13506579 0.15766366 0.15596647 0.13989932 > postscript(file="/var/www/html/rcomp/tmp/1oakk1260544990.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2qcnh1260544990.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3kwdp1260544990.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/432l41260544990.tab") > > system("convert tmp/1oakk1260544990.ps tmp/1oakk1260544990.png") > system("convert tmp/2qcnh1260544990.ps tmp/2qcnh1260544990.png") > > > proc.time() user system elapsed 0.691 0.338 0.966