R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(17,14,15,16,16,15,13,12,13,13,12,10,14,14,15,16,16,15,15,13,15,15,15,13,16,16,14,16,15,14,15,15,14,13,12,13,12,9,10,8,11,8,8,8,4,6,8,10,5,6,5,9,8,6,9,11,11,8,11,11,13) > par10 = 'FALSE' > par9 = '0' > par8 = '0' > par7 = '0' > par6 = '0' > par5 = '12' > par4 = '0' > par3 = '1' > par2 = '1' > par1 = '24' > par1 <- as.numeric(par1) #cut off periods > par1 <- 28 > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par6 <- 3 > par7 <- as.numeric(par7) #q > par7 <- 3 > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 ma2 ma3 -0.3138 -0.4502 0.5997 -0.1072 0.1072 -0.9999 s.e. 0.1839 0.1505 0.1619 0.1988 0.2045 0.2109 sigma^2 estimated as 1.392: log likelihood = -53.52, aic = 121.04 Warning message: In arima(x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, : possible convergence problem: optim gave code=1 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 34 End = 61 Frequency = 1 [1] 14.88688 14.86943 13.96496 14.78848 14.92681 13.97025 14.70198 14.98598 [9] 13.99380 14.61607 15.03782 14.03032 14.52976 15.07955 14.07800 14.44425 [17] 15.10994 14.13555 14.36123 15.12830 14.20167 14.28243 15.13427 14.27493 [25] 14.20950 15.12776 14.35374 14.14396 $se Time Series: Start = 34 End = 61 Frequency = 1 [1] 1.226537 1.417744 1.487954 1.531202 1.540734 1.546162 1.555093 1.553515 [9] 1.553971 1.558711 1.555929 1.555502 1.559450 1.556741 1.555904 1.559579 [17] 1.557268 1.556092 1.559533 1.557757 1.556249 1.559415 1.558255 1.556411 [25] 1.559257 1.558763 1.556584 1.559079 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 34 End = 61 Frequency = 1 [1] 12.48286 12.09065 11.04857 11.78732 11.90697 10.93977 11.65399 11.94109 [9] 10.94801 11.56100 11.98820 10.98154 11.47323 12.02833 11.02842 11.38747 [17] 12.05769 11.08561 11.30455 12.07510 11.15142 11.22598 12.08009 11.22436 [25] 11.15335 12.07258 11.30284 11.08817 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 34 End = 61 Frequency = 1 [1] 17.29089 17.64820 16.88135 17.78963 17.94664 17.00073 17.74996 18.03087 [9] 17.03958 17.67115 18.08744 17.07911 17.58628 18.13076 17.12757 17.50102 [17] 18.16218 17.18549 17.41792 18.18151 17.25192 17.33888 18.18845 17.32549 [25] 17.26564 18.18293 17.40465 17.19976 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 17.00000 14.00000 15.00000 16.00000 16.00000 15.00000 13.00000 12.00000 [9] 13.00000 13.00000 12.00000 10.00000 14.00000 14.00000 15.00000 16.00000 [17] 16.00000 15.00000 15.00000 13.00000 15.00000 15.00000 15.00000 13.00000 [25] 16.00000 16.00000 14.00000 16.00000 15.00000 14.00000 15.00000 15.00000 [33] 14.00000 14.88688 14.86943 13.96496 14.78848 14.92681 13.97025 14.70198 [41] 14.98598 13.99380 14.61607 15.03782 14.03032 14.52976 15.07955 14.07800 [49] 14.44425 15.10994 14.13555 14.36123 15.12830 14.20167 14.28243 15.13427 [57] 14.27493 14.20950 15.12776 14.35374 14.14396 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 34 End = 61 Frequency = 1 [1] 0.08239046 0.09534628 0.10654908 0.10354021 0.10321927 0.11067536 [7] 0.10577442 0.10366453 0.11104715 0.10664364 0.10346773 0.11086714 [13] 0.10732805 0.10323530 0.11052028 0.10797231 0.10306249 0.11008358 [19] 0.10859326 0.10296972 0.10958208 0.10918414 0.10296199 0.10903108 [25] 0.10973348 0.10303992 0.10844447 0.11022932 > postscript(file="/var/www/html/rcomp/tmp/1ef4d1260549421.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2pipe1260549421.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/394p11260549421.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4a0ps1260549421.tab") > > system("convert tmp/1ef4d1260549421.ps tmp/1ef4d1260549421.png") > system("convert tmp/2pipe1260549421.ps tmp/2pipe1260549421.png") > > > proc.time() user system elapsed 0.870 0.338 1.018