R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(9487,8700,9627,8947,9283,8829,9947,9628,9318,9605,8640,9214,9567,8547,9185,9470,9123,9278,10170,9434,9655,9429,8739,9552,9687,9019,9672,9206,9069,9788,10312,10105,9863,9656,9295,9946,9701,9049,10190,9706,9765,9893,9994,10433,10073,10112,9266,9820,10097,9115,10411,9678,10408,10153,10368,10581,10597,10680,9738,9556) > par10 = 'FALSE' > par9 = '1' > par8 = '1' > par7 = '1' > par6 = '0' > par5 = '12' > par4 = '1' > par3 = '1' > par2 = '1' > par1 = '12' > par1 <- as.numeric(par1) #cut off periods > par1 <- 28 > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par6 <- 3 > par7 <- as.numeric(par7) #q > par7 <- 3 > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 ma2 ma3 sar1 sma1 -1.1364 -0.7583 0.1572 0.3295 0.0373 -0.8300 -0.6915 0.5403 s.e. 0.3502 0.4353 0.3140 0.3956 0.3126 0.3057 2.6067 2.8237 sigma^2 estimated as 58295: log likelihood = -134.2, aic = 286.39 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 33 End = 60 Frequency = 1 [1] 9774.873 9624.613 9188.304 9551.430 9944.562 9315.681 9595.692 [8] 9671.663 9336.752 9832.361 10739.239 10145.621 9961.104 9994.477 [15] 9219.156 9863.278 10273.259 9392.433 10033.074 9818.804 9411.445 [22] 10251.430 10849.748 10396.342 10318.681 10078.736 9526.769 10132.762 $se Time Series: Start = 33 End = 60 Frequency = 1 [1] 253.4658 255.8667 270.9781 273.2619 274.0230 288.0290 288.6028 291.1581 [9] 301.5776 301.7269 308.3615 313.9377 386.9169 402.0955 417.9690 422.4023 [17] 434.1203 444.7191 449.0416 462.3816 469.5001 474.9412 487.9820 492.9573 [25] 591.8691 608.4829 626.6111 641.5255 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 33 End = 60 Frequency = 1 [1] 9278.080 9123.115 8657.187 9015.836 9407.477 8751.144 9030.031 [8] 9100.993 8745.660 9240.976 10134.851 9530.303 9202.747 9206.370 [15] 8399.937 9035.370 9422.383 8520.784 9152.953 8912.536 8491.225 [22] 9320.545 9893.303 9430.146 9158.618 8886.110 8298.611 8875.372 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 33 End = 60 Frequency = 1 [1] 10271.666 10126.112 9719.422 10087.023 10481.647 9880.218 10161.354 [8] 10242.333 9927.844 10423.746 11343.628 10760.939 10719.461 10782.584 [15] 10038.375 10691.187 11124.135 10264.083 10913.196 10725.072 10331.665 [22] 11182.314 11806.193 11362.538 11478.745 11271.363 10754.927 11390.152 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 9487.000 8700.000 9627.000 8947.000 9283.000 8829.000 9947.000 [8] 9628.000 9318.000 9605.000 8640.000 9214.000 9567.000 8547.000 [15] 9185.000 9470.000 9123.000 9278.000 10170.000 9434.000 9655.000 [22] 9429.000 8739.000 9552.000 9687.000 9019.000 9672.000 9206.000 [29] 9069.000 9788.000 10312.000 10105.000 9774.873 9624.613 9188.304 [36] 9551.430 9944.562 9315.681 9595.692 9671.663 9336.752 9832.361 [43] 10739.239 10145.621 9961.104 9994.477 9219.156 9863.278 10273.259 [50] 9392.433 10033.074 9818.804 9411.445 10251.430 10849.748 10396.342 [57] 10318.681 10078.736 9526.769 10132.762 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 33 End = 60 Frequency = 1 [1] 0.02593034 0.02658462 0.02949164 0.02860953 0.02755506 0.03091873 [7] 0.03007628 0.03010425 0.03230005 0.03068713 0.02871354 0.03094318 [13] 0.03884277 0.04023177 0.04533701 0.04282575 0.04225731 0.04734865 [19] 0.04475613 0.04709144 0.04988608 0.04632927 0.04497634 0.04741641 [25] 0.05735898 0.06037293 0.06577372 0.06331201 > postscript(file="/var/www/html/rcomp/tmp/132ob1260564592.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2i4nr1260564592.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/37xk71260564592.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4jp5t1260564592.tab") > system("convert tmp/132ob1260564592.ps tmp/132ob1260564592.png") > system("convert tmp/2i4nr1260564592.ps tmp/2i4nr1260564592.png") > > > proc.time() user system elapsed 2.351 0.362 2.713