R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(91.98,91.72,90.27,91.89,92.07,92.92,93.34,93.60,92.41,93.60,93.77,93.60,93.60,93.51,92.66,94.20,94.37,94.45,94.62,94.37,93.43,94.79,94.88,94.79,94.62,94.71,93.77,95.73,95.99,95.82,95.47,95.82,94.71,96.33,96.50,96.16,96.33,96.33,95.05,96.84,96.92,97.44,97.78,97.69,96.67,98.29,98.20,98.71,98.54,98.20,96.92,99.06,99.65,99.82,99.99,100.33,99.31,101.10,101.10,100.93,100.85,100.93,99.60,101.88,101.81,102.38,102.74,102.82,101.72,103.47,102.98,102.68,102.90,103.03,101.29,103.69,103.68,104.20,104.08,104.16,103.05,104.66,104.46,104.95,105.85,106.23,104.86,107.44,108.23,108.45,109.39,110.15,109.13,110.28,110.17,109.99,109.26,109.11,107.06,109.53,108.92,109.24,109.12,109.00,107.23,109.49,109.04,109.02) > par10 = 'FALSE' > par9 = '1' > par8 = '0' > par7 = '1' > par6 = '1' > par5 = '12' > par4 = '1' > par3 = '1' > par2 = '1' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ma1 sma1 0.7802 -0.7207 -0.6365 s.e. 0.5291 0.5819 0.1246 sigma^2 estimated as 0.1060: log likelihood = -27.72, aic = 63.44 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 97 End = 108 Frequency = 1 [1] 110.3433 110.4854 109.0811 111.4015 111.7582 112.1087 112.5149 112.8624 [9] 111.8038 113.2668 113.1159 113.1135 $se Time Series: Start = 97 End = 108 Frequency = 1 [1] 0.3256923 0.4744047 0.5955561 0.7020923 0.7988095 0.8881286 0.9715040 [8] 1.0499146 1.1240733 1.1945281 1.2617167 1.3259982 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 97 End = 108 Frequency = 1 [1] 109.7050 109.5556 107.9138 110.0254 110.1925 110.3680 110.6107 110.8045 [9] 109.6006 110.9255 110.6429 110.5145 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 97 End = 108 Frequency = 1 [1] 110.9817 111.4152 110.2484 112.7776 113.3239 113.8495 114.4190 114.9202 [9] 114.0070 115.6081 115.5889 115.7124 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 91.9800 91.7200 90.2700 91.8900 92.0700 92.9200 93.3400 93.6000 [9] 92.4100 93.6000 93.7700 93.6000 93.6000 93.5100 92.6600 94.2000 [17] 94.3700 94.4500 94.6200 94.3700 93.4300 94.7900 94.8800 94.7900 [25] 94.6200 94.7100 93.7700 95.7300 95.9900 95.8200 95.4700 95.8200 [33] 94.7100 96.3300 96.5000 96.1600 96.3300 96.3300 95.0500 96.8400 [41] 96.9200 97.4400 97.7800 97.6900 96.6700 98.2900 98.2000 98.7100 [49] 98.5400 98.2000 96.9200 99.0600 99.6500 99.8200 99.9900 100.3300 [57] 99.3100 101.1000 101.1000 100.9300 100.8500 100.9300 99.6000 101.8800 [65] 101.8100 102.3800 102.7400 102.8200 101.7200 103.4700 102.9800 102.6800 [73] 102.9000 103.0300 101.2900 103.6900 103.6800 104.2000 104.0800 104.1600 [81] 103.0500 104.6600 104.4600 104.9500 105.8500 106.2300 104.8600 107.4400 [89] 108.2300 108.4500 109.3900 110.1500 109.1300 110.2800 110.1700 109.9900 [97] 110.3433 110.4854 109.0811 111.4015 111.7582 112.1087 112.5149 112.8624 [105] 111.8038 113.2668 113.1159 113.1135 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 97 End = 108 Frequency = 1 [1] 0.002951627 0.004293822 0.005459754 0.006302357 0.007147659 0.007922030 [7] 0.008634450 0.009302609 0.010053984 0.010546143 0.011154195 0.011722724 > postscript(file="/var/www/html/rcomp/tmp/1v0hl1260569922.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2n1fv1260569922.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3ni661260569922.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4ln961260569922.tab") > > system("convert tmp/1v0hl1260569922.ps tmp/1v0hl1260569922.png") > system("convert tmp/2n1fv1260569922.ps tmp/2n1fv1260569922.png") > > > proc.time() user system elapsed 1.236 0.323 1.392