R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(2430.47 + ,1213.8 + ,2516.3 + ,1245.6 + ,2633.63 + ,1306.3 + ,2799.84 + ,1255.8 + ,3001.93 + ,1257.6 + ,3229.29 + ,1287.8 + ,3173.02 + ,1300.4 + ,3322.08 + ,1320.9 + ,3417.88 + ,1370.8 + ,3486.95 + ,1327.3 + ,3016.22 + ,1320 + ,2709.61 + ,1345.3 + ,2914.87 + ,1346.7 + ,3203.08 + ,1395.4 + ,3320.25 + ,1462 + ,3446.25 + ,1491.6 + ,3456.85 + ,1461.8 + ,3566.53 + ,1477.9 + ,3763.67 + ,1490.3 + ,3607.75 + ,1521.1 + ,3747.38 + ,1561.9 + ,3623.91 + ,1552.6 + ,3699.76 + ,1523.6 + ,3629.61 + ,1548.3 + ,3911.52 + ,1552.4 + ,4281.47 + ,1587 + ,4742.42 + ,1621.3 + ,4522.42 + ,1648.7 + ,4879.79 + ,1641.8 + ,5059.11 + ,1650.6 + ,5093.19 + ,1688.6 + ,4941.81 + ,1670.7 + ,4832.67 + ,1682.2 + ,4876.18 + ,1678.9 + ,5018.07 + ,1650.6 + ,4780.34 + ,1662.4 + ,4953.59 + ,1664.5 + ,4622.32 + ,1683.2 + ,4557.13 + ,1736.2 + ,4560.03 + ,1747.6 + ,4105.66 + ,1749 + ,4004.89 + ,1759.7 + ,4277.26 + ,1793.6 + ,4245.98 + ,1817.4 + ,4057.64 + ,1858.4 + ,3931.42 + ,1839.9 + ,3637.15 + ,1809.1 + ,3339.91 + ,1877.7 + ,3465.74 + ,1880.3 + ,3571.25 + ,1930.9 + ,3706.93 + ,2039.3 + ,3584.17 + ,1992.7 + ,3552.11 + ,1987.8 + ,3695.24 + ,1984.4 + ,3510 + ,2016.5 + ,3357.7 + ,2016.7 + ,3060.91 + ,2064.1 + ,2736.98 + ,2031.5 + ,2709.45 + ,2000.3 + ,2314.96 + ,2057.8 + ,2561.29 + ,2041.2 + ,2663.49 + ,2093.2 + ,2407.87 + ,2158.3 + ,2237.74 + ,2128.8 + ,2165.44 + ,2131.9 + ,2098.89 + ,2170.3 + ,2318.54 + ,2190.8 + ,2315.49 + ,2217.7 + ,2395.47 + ,2254.4 + ,2474.07 + ,2223.3 + ,2479.57 + ,2210.5 + ,2386.92 + ,2250.8 + ,2537.84 + ,2249.1 + ,2567.13 + ,2288.6 + ,2660.37 + ,2329.2 + ,2696.28 + ,2313.8 + ,2748.5 + ,2309.8 + ,2663.32 + ,2345.9 + ,2707.69 + ,2361.3 + ,2669.36 + ,2372 + ,2687.68 + ,2410.4 + ,2650.24 + ,2398.5 + ,2620.03 + ,2362.3 + ,2668.47 + ,2419.1 + ,2692.06 + ,2421.6 + ,2737.67 + ,2465 + ,2774.77 + ,2480.5 + ,2819.19 + ,2506.1 + ,2892.56 + ,2506.6 + ,2866.08 + ,2525.8 + ,2817.41 + ,2550 + ,2934.75 + ,2578.3 + ,3036.54 + ,2807.8 + ,3139.5 + ,2815.3 + ,3114.31 + ,2767.7 + ,3261.3 + ,2815.4 + ,3201.79 + ,2838.8 + ,3264.53 + ,2864 + ,3349.1 + ,2948.6 + ,3446.17 + ,2922.8 + ,3469.48 + ,2917.2 + ,3507.13 + ,2936.8 + ,3536.2 + ,2993.4 + ,3359.05 + ,3007.8 + ,3378.85 + ,3046.3 + ,3449.15 + ,3011.5 + ,3522.89 + ,2958.6 + ,3551.04 + ,3019.8 + ,3669.15 + ,2998.5 + ,3602 + ,3040.4 + ,3697.22 + ,3166 + ,3760.9 + ,3110 + ,3665.08 + ,3099.2 + ,3708.8 + ,3150.3 + ,3858.21 + ,3163.6 + ,3933.16 + ,3182.6 + ,3946.98 + ,3244.4 + ,3794.29 + ,3223.2 + ,3765.56 + ,3143.6 + ,3820.33 + ,3217 + ,3885.12 + ,3182.3 + ,3752.67 + ,3217.2 + ,3683.79 + ,3262.5 + ,3240.75 + ,3227.9 + ,3188.82 + ,3171.6 + ,3017.98 + ,3219 + ,3237.2 + ,3195.4 + ,3182.53 + ,3221.6 + ,2906.42 + ,3262.1 + ,2881.35 + ,3179.5 + ,2915.64 + ,3133.6 + ,2635.13 + ,3219.2 + ,2331.43 + ,3245 + ,2159.04 + ,3265.3 + ,2065.46 + ,3312.5 + ,1983.48 + ,3383.6 + ,1770.41 + ,3386.3 + ,1815.99 + ,3411.1 + ,2026.97 + ,3467.2 + ,2124.81 + ,3487.7 + ,2098.28 + ,3575.5 + ,2291.39 + ,3571.5 + ,2401.57 + ,3582.3 + ,2453.89 + ,3637.1 + ,2409.53 + ,3685) + ,dim=c(2 + ,145) + ,dimnames=list(c('y(t)' + ,'x(t)') + ,1:145)) > y <- array(NA,dim=c(2,145),dimnames=list(c('y(t)','x(t)'),1:145)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'No Linear Trend' > par2 = 'Do not include Seasonal Dummies' > par1 = '2' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > library(lmtest) Loading required package: zoo Attaching package: 'zoo' The following object(s) are masked from package:base : as.Date.numeric > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x x(t) y(t) 1 1213.8 2430.47 2 1245.6 2516.30 3 1306.3 2633.63 4 1255.8 2799.84 5 1257.6 3001.93 6 1287.8 3229.29 7 1300.4 3173.02 8 1320.9 3322.08 9 1370.8 3417.88 10 1327.3 3486.95 11 1320.0 3016.22 12 1345.3 2709.61 13 1346.7 2914.87 14 1395.4 3203.08 15 1462.0 3320.25 16 1491.6 3446.25 17 1461.8 3456.85 18 1477.9 3566.53 19 1490.3 3763.67 20 1521.1 3607.75 21 1561.9 3747.38 22 1552.6 3623.91 23 1523.6 3699.76 24 1548.3 3629.61 25 1552.4 3911.52 26 1587.0 4281.47 27 1621.3 4742.42 28 1648.7 4522.42 29 1641.8 4879.79 30 1650.6 5059.11 31 1688.6 5093.19 32 1670.7 4941.81 33 1682.2 4832.67 34 1678.9 4876.18 35 1650.6 5018.07 36 1662.4 4780.34 37 1664.5 4953.59 38 1683.2 4622.32 39 1736.2 4557.13 40 1747.6 4560.03 41 1749.0 4105.66 42 1759.7 4004.89 43 1793.6 4277.26 44 1817.4 4245.98 45 1858.4 4057.64 46 1839.9 3931.42 47 1809.1 3637.15 48 1877.7 3339.91 49 1880.3 3465.74 50 1930.9 3571.25 51 2039.3 3706.93 52 1992.7 3584.17 53 1987.8 3552.11 54 1984.4 3695.24 55 2016.5 3510.00 56 2016.7 3357.70 57 2064.1 3060.91 58 2031.5 2736.98 59 2000.3 2709.45 60 2057.8 2314.96 61 2041.2 2561.29 62 2093.2 2663.49 63 2158.3 2407.87 64 2128.8 2237.74 65 2131.9 2165.44 66 2170.3 2098.89 67 2190.8 2318.54 68 2217.7 2315.49 69 2254.4 2395.47 70 2223.3 2474.07 71 2210.5 2479.57 72 2250.8 2386.92 73 2249.1 2537.84 74 2288.6 2567.13 75 2329.2 2660.37 76 2313.8 2696.28 77 2309.8 2748.50 78 2345.9 2663.32 79 2361.3 2707.69 80 2372.0 2669.36 81 2410.4 2687.68 82 2398.5 2650.24 83 2362.3 2620.03 84 2419.1 2668.47 85 2421.6 2692.06 86 2465.0 2737.67 87 2480.5 2774.77 88 2506.1 2819.19 89 2506.6 2892.56 90 2525.8 2866.08 91 2550.0 2817.41 92 2578.3 2934.75 93 2807.8 3036.54 94 2815.3 3139.50 95 2767.7 3114.31 96 2815.4 3261.30 97 2838.8 3201.79 98 2864.0 3264.53 99 2948.6 3349.10 100 2922.8 3446.17 101 2917.2 3469.48 102 2936.8 3507.13 103 2993.4 3536.20 104 3007.8 3359.05 105 3046.3 3378.85 106 3011.5 3449.15 107 2958.6 3522.89 108 3019.8 3551.04 109 2998.5 3669.15 110 3040.4 3602.00 111 3166.0 3697.22 112 3110.0 3760.90 113 3099.2 3665.08 114 3150.3 3708.80 115 3163.6 3858.21 116 3182.6 3933.16 117 3244.4 3946.98 118 3223.2 3794.29 119 3143.6 3765.56 120 3217.0 3820.33 121 3182.3 3885.12 122 3217.2 3752.67 123 3262.5 3683.79 124 3227.9 3240.75 125 3171.6 3188.82 126 3219.0 3017.98 127 3195.4 3237.20 128 3221.6 3182.53 129 3262.1 2906.42 130 3179.5 2881.35 131 3133.6 2915.64 132 3219.2 2635.13 133 3245.0 2331.43 134 3265.3 2159.04 135 3312.5 2065.46 136 3383.6 1983.48 137 3386.3 1770.41 138 3411.1 1815.99 139 3467.2 2026.97 140 3487.7 2124.81 141 3575.5 2098.28 142 3571.5 2291.39 143 3582.3 2401.57 144 3637.1 2453.89 145 3685.0 2409.53 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) `y(t)` 3393.9871 -0.3207 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -1400.8 -434.0 -165.9 670.3 1116.2 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3393.98714 243.73020 13.925 < 2e-16 *** `y(t)` -0.32069 0.07285 -4.402 2.08e-05 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 668.4 on 143 degrees of freedom Multiple R-squared: 0.1194, Adjusted R-squared: 0.1132 F-statistic: 19.38 on 1 and 143 DF, p-value: 2.083e-05 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 2.573036e-04 5.146071e-04 9.997427e-01 [2,] 1.249158e-05 2.498316e-05 9.999875e-01 [3,] 6.334448e-07 1.266890e-06 9.999994e-01 [4,] 3.406053e-08 6.812106e-08 1.000000e+00 [5,] 5.880991e-09 1.176198e-08 1.000000e+00 [6,] 3.065407e-10 6.130813e-10 1.000000e+00 [7,] 2.538457e-11 5.076915e-11 1.000000e+00 [8,] 2.351961e-11 4.703921e-11 1.000000e+00 [9,] 4.687245e-12 9.374489e-12 1.000000e+00 [10,] 1.845612e-12 3.691224e-12 1.000000e+00 [11,] 3.484080e-12 6.968160e-12 1.000000e+00 [12,] 3.010352e-12 6.020704e-12 1.000000e+00 [13,] 6.776963e-13 1.355393e-12 1.000000e+00 [14,] 1.251718e-13 2.503437e-13 1.000000e+00 [15,] 1.600924e-14 3.201849e-14 1.000000e+00 [16,] 4.520142e-15 9.040284e-15 1.000000e+00 [17,] 1.291959e-15 2.583917e-15 1.000000e+00 [18,] 4.295732e-16 8.591464e-16 1.000000e+00 [19,] 6.500909e-17 1.300182e-16 1.000000e+00 [20,] 1.626924e-17 3.253847e-17 1.000000e+00 [21,] 2.103341e-18 4.206681e-18 1.000000e+00 [22,] 3.260672e-19 6.521343e-19 1.000000e+00 [23,] 1.110527e-19 2.221054e-19 1.000000e+00 [24,] 1.304036e-20 2.608072e-20 1.000000e+00 [25,] 2.999229e-21 5.998458e-21 1.000000e+00 [26,] 7.788577e-22 1.557715e-21 1.000000e+00 [27,] 1.021696e-22 2.043392e-22 1.000000e+00 [28,] 1.229836e-23 2.459672e-23 1.000000e+00 [29,] 1.433748e-24 2.867497e-24 1.000000e+00 [30,] 1.632259e-25 3.264518e-25 1.000000e+00 [31,] 2.753733e-26 5.507467e-26 1.000000e+00 [32,] 3.302992e-27 6.605984e-27 1.000000e+00 [33,] 4.249238e-28 8.498475e-28 1.000000e+00 [34,] 8.544961e-29 1.708992e-28 1.000000e+00 [35,] 8.181852e-29 1.636370e-28 1.000000e+00 [36,] 8.669431e-29 1.733886e-28 1.000000e+00 [37,] 1.666707e-27 3.333415e-27 1.000000e+00 [38,] 3.796003e-26 7.592006e-26 1.000000e+00 [39,] 2.035524e-25 4.071048e-25 1.000000e+00 [40,] 1.588915e-24 3.177831e-24 1.000000e+00 [41,] 6.181587e-23 1.236317e-22 1.000000e+00 [42,] 1.166720e-21 2.333441e-21 1.000000e+00 [43,] 2.232651e-20 4.465303e-20 1.000000e+00 [44,] 2.987790e-18 5.975579e-18 1.000000e+00 [45,] 7.637849e-17 1.527570e-16 1.000000e+00 [46,] 1.610854e-15 3.221707e-15 1.000000e+00 [47,] 5.790374e-14 1.158075e-13 1.000000e+00 [48,] 7.729303e-13 1.545861e-12 1.000000e+00 [49,] 7.055823e-12 1.411165e-11 1.000000e+00 [50,] 4.138962e-11 8.277924e-11 1.000000e+00 [51,] 3.167224e-10 6.334448e-10 1.000000e+00 [52,] 2.220592e-09 4.441184e-09 1.000000e+00 [53,] 1.966016e-08 3.932031e-08 1.000000e+00 [54,] 1.164323e-07 2.328646e-07 9.999999e-01 [55,] 4.434651e-07 8.869302e-07 9.999996e-01 [56,] 1.747708e-06 3.495416e-06 9.999983e-01 [57,] 4.914783e-06 9.829566e-06 9.999951e-01 [58,] 1.376831e-05 2.753663e-05 9.999862e-01 [59,] 3.786879e-05 7.573757e-05 9.999621e-01 [60,] 7.967742e-05 1.593548e-04 9.999203e-01 [61,] 1.491231e-04 2.982461e-04 9.998509e-01 [62,] 2.683584e-04 5.367169e-04 9.997316e-01 [63,] 4.864063e-04 9.728127e-04 9.995136e-01 [64,] 8.599471e-04 1.719894e-03 9.991401e-01 [65,] 1.526490e-03 3.052980e-03 9.984735e-01 [66,] 2.592601e-03 5.185203e-03 9.974074e-01 [67,] 4.328029e-03 8.656059e-03 9.956720e-01 [68,] 7.119194e-03 1.423839e-02 9.928808e-01 [69,] 1.190271e-02 2.380543e-02 9.880973e-01 [70,] 1.978483e-02 3.956966e-02 9.802152e-01 [71,] 3.263648e-02 6.527296e-02 9.673635e-01 [72,] 5.260280e-02 1.052056e-01 9.473972e-01 [73,] 8.333365e-02 1.666673e-01 9.166663e-01 [74,] 1.270485e-01 2.540971e-01 8.729515e-01 [75,] 1.880510e-01 3.761019e-01 8.119490e-01 [76,] 2.687403e-01 5.374807e-01 7.312597e-01 [77,] 3.668394e-01 7.336788e-01 6.331606e-01 [78,] 4.844021e-01 9.688041e-01 5.155979e-01 [79,] 6.241305e-01 7.517389e-01 3.758695e-01 [80,] 7.510883e-01 4.978233e-01 2.489117e-01 [81,] 8.599575e-01 2.800849e-01 1.400425e-01 [82,] 9.323242e-01 1.353517e-01 6.767584e-02 [83,] 9.736922e-01 5.261554e-02 2.630777e-02 [84,] 9.919307e-01 1.613852e-02 8.069260e-03 [85,] 9.982493e-01 3.501329e-03 1.750664e-03 [86,] 9.997600e-01 4.800694e-04 2.400347e-04 [87,] 9.999827e-01 3.456422e-05 1.728211e-05 [88,] 9.999993e-01 1.436743e-06 7.183715e-07 [89,] 9.999999e-01 2.171148e-07 1.085574e-07 [90,] 1.000000e+00 3.423904e-08 1.711952e-08 [91,] 1.000000e+00 2.931440e-09 1.465720e-09 [92,] 1.000000e+00 3.807198e-10 1.903599e-10 [93,] 1.000000e+00 4.529400e-11 2.264700e-11 [94,] 1.000000e+00 6.508835e-12 3.254418e-12 [95,] 1.000000e+00 2.134887e-12 1.067444e-12 [96,] 1.000000e+00 6.808976e-13 3.404488e-13 [97,] 1.000000e+00 2.112042e-13 1.056021e-13 [98,] 1.000000e+00 8.143533e-14 4.071766e-14 [99,] 1.000000e+00 5.254657e-14 2.627329e-14 [100,] 1.000000e+00 3.116112e-14 1.558056e-14 [101,] 1.000000e+00 2.634799e-14 1.317399e-14 [102,] 1.000000e+00 1.935508e-14 9.677539e-15 [103,] 1.000000e+00 8.932956e-15 4.466478e-15 [104,] 1.000000e+00 7.807644e-15 3.903822e-15 [105,] 1.000000e+00 6.457222e-15 3.228611e-15 [106,] 1.000000e+00 7.003680e-15 3.501840e-15 [107,] 1.000000e+00 1.491320e-14 7.456600e-15 [108,] 1.000000e+00 3.145011e-14 1.572506e-14 [109,] 1.000000e+00 6.209246e-14 3.104623e-14 [110,] 1.000000e+00 1.548678e-13 7.743388e-14 [111,] 1.000000e+00 4.141666e-13 2.070833e-13 [112,] 1.000000e+00 1.123255e-12 5.616273e-13 [113,] 1.000000e+00 2.435833e-12 1.217916e-12 [114,] 1.000000e+00 6.649600e-12 3.324800e-12 [115,] 1.000000e+00 2.120049e-11 1.060025e-11 [116,] 1.000000e+00 6.148779e-11 3.074389e-11 [117,] 1.000000e+00 1.933296e-10 9.666479e-11 [118,] 1.000000e+00 5.725748e-10 2.862874e-10 [119,] 1.000000e+00 1.300843e-09 6.504216e-10 [120,] 1.000000e+00 4.552579e-09 2.276289e-09 [121,] 1.000000e+00 1.587312e-08 7.936560e-09 [122,] 1.000000e+00 5.540295e-08 2.770147e-08 [123,] 9.999999e-01 1.960276e-07 9.801380e-08 [124,] 9.999997e-01 6.897524e-07 3.448762e-07 [125,] 9.999988e-01 2.365117e-06 1.182559e-06 [126,] 9.999970e-01 5.906093e-06 2.953046e-06 [127,] 9.999973e-01 5.317835e-06 2.658917e-06 [128,] 9.999990e-01 2.050788e-06 1.025394e-06 [129,] 9.999998e-01 4.862395e-07 2.431198e-07 [130,] 1.000000e+00 8.917433e-08 4.458716e-08 [131,] 1.000000e+00 1.652927e-08 8.264634e-09 [132,] 1.000000e+00 4.509103e-08 2.254551e-08 [133,] 9.999996e-01 7.380650e-07 3.690325e-07 [134,] 9.999943e-01 1.144771e-05 5.723853e-06 [135,] 9.999284e-01 1.431766e-04 7.158832e-05 [136,] 9.995158e-01 9.683940e-04 4.841970e-04 > postscript(file="/var/www/html/rcomp/tmp/1m66u1260631971.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/2fcje1260631971.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/3ttan1260631971.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/4b89n1260631971.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/5ekuh1260631971.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 145 Frequency = 1 1 2 3 4 5 6 -1400.76911 -1341.44462 -1243.11851 -1240.31727 -1173.70981 -1070.59861 7 8 9 10 11 12 -1076.04362 -1007.74214 -927.12041 -948.47062 -1106.72720 -1179.75278 13 14 15 16 17 18 -1112.52874 -971.40379 -867.22900 -797.22255 -823.62327 -772.35042 19 20 21 22 23 24 -696.73035 -715.93174 -630.35433 -679.24945 -683.92540 -681.72154 25 26 27 28 29 30 -587.21691 -433.97907 -251.85880 -295.00975 -187.30615 -121.00071 31 32 33 34 35 36 -72.07172 -138.51719 -162.01688 -151.36382 -134.16167 -198.59838 37 38 39 40 41 42 -140.93951 -228.47320 -196.37873 -184.04874 -328.35890 -349.97444 43 44 45 46 47 48 -228.72916 -214.96022 -234.35825 -293.33525 -418.50356 -445.22431 49 50 51 52 53 54 -402.27237 -317.83678 -165.92608 -251.89351 -267.07471 -224.57491 55 56 57 58 59 60 -251.87881 -300.51930 -348.29574 -484.77560 -524.80409 -593.81156 61 62 63 64 65 66 -531.41695 -446.64282 -463.51661 -547.57495 -567.66055 -550.60222 67 68 69 70 71 72 -459.66351 -433.74160 -371.39312 -377.28719 -388.32342 -377.73499 73 74 75 76 77 78 -331.03704 -282.14414 -211.64337 -215.52753 -202.78130 -193.99734 79 80 81 82 83 84 -164.36850 -165.96040 -121.68543 -145.59192 -191.47984 -119.14581 85 86 87 88 89 90 -109.08082 -51.05433 -23.65687 16.18801 40.21675 50.92498 91 92 93 94 95 96 59.51718 125.44650 387.58914 428.10698 372.42890 467.26655 97 98 99 100 101 102 471.58252 516.90237 628.62280 633.95180 635.82699 667.50083 103 104 105 106 107 108 733.42317 691.01362 735.86321 723.60744 694.35484 764.58215 109 110 111 112 113 114 781.15839 801.52432 957.66005 922.08135 880.55320 945.67360 115 116 117 118 119 120 1006.88731 1049.92274 1116.15462 1045.98906 957.17574 1048.13972 121 122 123 124 125 126 1034.21698 1026.64210 1049.85324 873.17645 800.22322 792.83720 127 128 129 130 131 132 839.53802 848.20611 800.16146 709.52186 674.61818 670.26252 133 134 135 136 137 138 598.67014 563.68705 580.87725 625.68740 560.05880 599.47568 139 140 141 142 143 144 723.23404 775.10997 854.40217 912.32986 958.46306 1030.04136 145 1063.71572 > postscript(file="/var/www/html/rcomp/tmp/6uz681260631971.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 145 Frequency = 1 lag(myerror, k = 1) myerror 0 -1400.76911 NA 1 -1341.44462 -1400.76911 2 -1243.11851 -1341.44462 3 -1240.31727 -1243.11851 4 -1173.70981 -1240.31727 5 -1070.59861 -1173.70981 6 -1076.04362 -1070.59861 7 -1007.74214 -1076.04362 8 -927.12041 -1007.74214 9 -948.47062 -927.12041 10 -1106.72720 -948.47062 11 -1179.75278 -1106.72720 12 -1112.52874 -1179.75278 13 -971.40379 -1112.52874 14 -867.22900 -971.40379 15 -797.22255 -867.22900 16 -823.62327 -797.22255 17 -772.35042 -823.62327 18 -696.73035 -772.35042 19 -715.93174 -696.73035 20 -630.35433 -715.93174 21 -679.24945 -630.35433 22 -683.92540 -679.24945 23 -681.72154 -683.92540 24 -587.21691 -681.72154 25 -433.97907 -587.21691 26 -251.85880 -433.97907 27 -295.00975 -251.85880 28 -187.30615 -295.00975 29 -121.00071 -187.30615 30 -72.07172 -121.00071 31 -138.51719 -72.07172 32 -162.01688 -138.51719 33 -151.36382 -162.01688 34 -134.16167 -151.36382 35 -198.59838 -134.16167 36 -140.93951 -198.59838 37 -228.47320 -140.93951 38 -196.37873 -228.47320 39 -184.04874 -196.37873 40 -328.35890 -184.04874 41 -349.97444 -328.35890 42 -228.72916 -349.97444 43 -214.96022 -228.72916 44 -234.35825 -214.96022 45 -293.33525 -234.35825 46 -418.50356 -293.33525 47 -445.22431 -418.50356 48 -402.27237 -445.22431 49 -317.83678 -402.27237 50 -165.92608 -317.83678 51 -251.89351 -165.92608 52 -267.07471 -251.89351 53 -224.57491 -267.07471 54 -251.87881 -224.57491 55 -300.51930 -251.87881 56 -348.29574 -300.51930 57 -484.77560 -348.29574 58 -524.80409 -484.77560 59 -593.81156 -524.80409 60 -531.41695 -593.81156 61 -446.64282 -531.41695 62 -463.51661 -446.64282 63 -547.57495 -463.51661 64 -567.66055 -547.57495 65 -550.60222 -567.66055 66 -459.66351 -550.60222 67 -433.74160 -459.66351 68 -371.39312 -433.74160 69 -377.28719 -371.39312 70 -388.32342 -377.28719 71 -377.73499 -388.32342 72 -331.03704 -377.73499 73 -282.14414 -331.03704 74 -211.64337 -282.14414 75 -215.52753 -211.64337 76 -202.78130 -215.52753 77 -193.99734 -202.78130 78 -164.36850 -193.99734 79 -165.96040 -164.36850 80 -121.68543 -165.96040 81 -145.59192 -121.68543 82 -191.47984 -145.59192 83 -119.14581 -191.47984 84 -109.08082 -119.14581 85 -51.05433 -109.08082 86 -23.65687 -51.05433 87 16.18801 -23.65687 88 40.21675 16.18801 89 50.92498 40.21675 90 59.51718 50.92498 91 125.44650 59.51718 92 387.58914 125.44650 93 428.10698 387.58914 94 372.42890 428.10698 95 467.26655 372.42890 96 471.58252 467.26655 97 516.90237 471.58252 98 628.62280 516.90237 99 633.95180 628.62280 100 635.82699 633.95180 101 667.50083 635.82699 102 733.42317 667.50083 103 691.01362 733.42317 104 735.86321 691.01362 105 723.60744 735.86321 106 694.35484 723.60744 107 764.58215 694.35484 108 781.15839 764.58215 109 801.52432 781.15839 110 957.66005 801.52432 111 922.08135 957.66005 112 880.55320 922.08135 113 945.67360 880.55320 114 1006.88731 945.67360 115 1049.92274 1006.88731 116 1116.15462 1049.92274 117 1045.98906 1116.15462 118 957.17574 1045.98906 119 1048.13972 957.17574 120 1034.21698 1048.13972 121 1026.64210 1034.21698 122 1049.85324 1026.64210 123 873.17645 1049.85324 124 800.22322 873.17645 125 792.83720 800.22322 126 839.53802 792.83720 127 848.20611 839.53802 128 800.16146 848.20611 129 709.52186 800.16146 130 674.61818 709.52186 131 670.26252 674.61818 132 598.67014 670.26252 133 563.68705 598.67014 134 580.87725 563.68705 135 625.68740 580.87725 136 560.05880 625.68740 137 599.47568 560.05880 138 723.23404 599.47568 139 775.10997 723.23404 140 854.40217 775.10997 141 912.32986 854.40217 142 958.46306 912.32986 143 1030.04136 958.46306 144 1063.71572 1030.04136 145 NA 1063.71572 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] -1341.44462 -1400.76911 [2,] -1243.11851 -1341.44462 [3,] -1240.31727 -1243.11851 [4,] -1173.70981 -1240.31727 [5,] -1070.59861 -1173.70981 [6,] -1076.04362 -1070.59861 [7,] -1007.74214 -1076.04362 [8,] -927.12041 -1007.74214 [9,] -948.47062 -927.12041 [10,] -1106.72720 -948.47062 [11,] -1179.75278 -1106.72720 [12,] -1112.52874 -1179.75278 [13,] -971.40379 -1112.52874 [14,] -867.22900 -971.40379 [15,] -797.22255 -867.22900 [16,] -823.62327 -797.22255 [17,] -772.35042 -823.62327 [18,] -696.73035 -772.35042 [19,] -715.93174 -696.73035 [20,] -630.35433 -715.93174 [21,] -679.24945 -630.35433 [22,] -683.92540 -679.24945 [23,] -681.72154 -683.92540 [24,] -587.21691 -681.72154 [25,] -433.97907 -587.21691 [26,] -251.85880 -433.97907 [27,] -295.00975 -251.85880 [28,] -187.30615 -295.00975 [29,] -121.00071 -187.30615 [30,] -72.07172 -121.00071 [31,] -138.51719 -72.07172 [32,] -162.01688 -138.51719 [33,] -151.36382 -162.01688 [34,] -134.16167 -151.36382 [35,] -198.59838 -134.16167 [36,] -140.93951 -198.59838 [37,] -228.47320 -140.93951 [38,] -196.37873 -228.47320 [39,] -184.04874 -196.37873 [40,] -328.35890 -184.04874 [41,] -349.97444 -328.35890 [42,] -228.72916 -349.97444 [43,] -214.96022 -228.72916 [44,] -234.35825 -214.96022 [45,] -293.33525 -234.35825 [46,] -418.50356 -293.33525 [47,] -445.22431 -418.50356 [48,] -402.27237 -445.22431 [49,] -317.83678 -402.27237 [50,] -165.92608 -317.83678 [51,] -251.89351 -165.92608 [52,] -267.07471 -251.89351 [53,] -224.57491 -267.07471 [54,] -251.87881 -224.57491 [55,] -300.51930 -251.87881 [56,] -348.29574 -300.51930 [57,] -484.77560 -348.29574 [58,] -524.80409 -484.77560 [59,] -593.81156 -524.80409 [60,] -531.41695 -593.81156 [61,] -446.64282 -531.41695 [62,] -463.51661 -446.64282 [63,] -547.57495 -463.51661 [64,] -567.66055 -547.57495 [65,] -550.60222 -567.66055 [66,] -459.66351 -550.60222 [67,] -433.74160 -459.66351 [68,] -371.39312 -433.74160 [69,] -377.28719 -371.39312 [70,] -388.32342 -377.28719 [71,] -377.73499 -388.32342 [72,] -331.03704 -377.73499 [73,] -282.14414 -331.03704 [74,] -211.64337 -282.14414 [75,] -215.52753 -211.64337 [76,] -202.78130 -215.52753 [77,] -193.99734 -202.78130 [78,] -164.36850 -193.99734 [79,] -165.96040 -164.36850 [80,] -121.68543 -165.96040 [81,] -145.59192 -121.68543 [82,] -191.47984 -145.59192 [83,] -119.14581 -191.47984 [84,] -109.08082 -119.14581 [85,] -51.05433 -109.08082 [86,] -23.65687 -51.05433 [87,] 16.18801 -23.65687 [88,] 40.21675 16.18801 [89,] 50.92498 40.21675 [90,] 59.51718 50.92498 [91,] 125.44650 59.51718 [92,] 387.58914 125.44650 [93,] 428.10698 387.58914 [94,] 372.42890 428.10698 [95,] 467.26655 372.42890 [96,] 471.58252 467.26655 [97,] 516.90237 471.58252 [98,] 628.62280 516.90237 [99,] 633.95180 628.62280 [100,] 635.82699 633.95180 [101,] 667.50083 635.82699 [102,] 733.42317 667.50083 [103,] 691.01362 733.42317 [104,] 735.86321 691.01362 [105,] 723.60744 735.86321 [106,] 694.35484 723.60744 [107,] 764.58215 694.35484 [108,] 781.15839 764.58215 [109,] 801.52432 781.15839 [110,] 957.66005 801.52432 [111,] 922.08135 957.66005 [112,] 880.55320 922.08135 [113,] 945.67360 880.55320 [114,] 1006.88731 945.67360 [115,] 1049.92274 1006.88731 [116,] 1116.15462 1049.92274 [117,] 1045.98906 1116.15462 [118,] 957.17574 1045.98906 [119,] 1048.13972 957.17574 [120,] 1034.21698 1048.13972 [121,] 1026.64210 1034.21698 [122,] 1049.85324 1026.64210 [123,] 873.17645 1049.85324 [124,] 800.22322 873.17645 [125,] 792.83720 800.22322 [126,] 839.53802 792.83720 [127,] 848.20611 839.53802 [128,] 800.16146 848.20611 [129,] 709.52186 800.16146 [130,] 674.61818 709.52186 [131,] 670.26252 674.61818 [132,] 598.67014 670.26252 [133,] 563.68705 598.67014 [134,] 580.87725 563.68705 [135,] 625.68740 580.87725 [136,] 560.05880 625.68740 [137,] 599.47568 560.05880 [138,] 723.23404 599.47568 [139,] 775.10997 723.23404 [140,] 854.40217 775.10997 [141,] 912.32986 854.40217 [142,] 958.46306 912.32986 [143,] 1030.04136 958.46306 [144,] 1063.71572 1030.04136 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 -1341.44462 -1400.76911 2 -1243.11851 -1341.44462 3 -1240.31727 -1243.11851 4 -1173.70981 -1240.31727 5 -1070.59861 -1173.70981 6 -1076.04362 -1070.59861 7 -1007.74214 -1076.04362 8 -927.12041 -1007.74214 9 -948.47062 -927.12041 10 -1106.72720 -948.47062 11 -1179.75278 -1106.72720 12 -1112.52874 -1179.75278 13 -971.40379 -1112.52874 14 -867.22900 -971.40379 15 -797.22255 -867.22900 16 -823.62327 -797.22255 17 -772.35042 -823.62327 18 -696.73035 -772.35042 19 -715.93174 -696.73035 20 -630.35433 -715.93174 21 -679.24945 -630.35433 22 -683.92540 -679.24945 23 -681.72154 -683.92540 24 -587.21691 -681.72154 25 -433.97907 -587.21691 26 -251.85880 -433.97907 27 -295.00975 -251.85880 28 -187.30615 -295.00975 29 -121.00071 -187.30615 30 -72.07172 -121.00071 31 -138.51719 -72.07172 32 -162.01688 -138.51719 33 -151.36382 -162.01688 34 -134.16167 -151.36382 35 -198.59838 -134.16167 36 -140.93951 -198.59838 37 -228.47320 -140.93951 38 -196.37873 -228.47320 39 -184.04874 -196.37873 40 -328.35890 -184.04874 41 -349.97444 -328.35890 42 -228.72916 -349.97444 43 -214.96022 -228.72916 44 -234.35825 -214.96022 45 -293.33525 -234.35825 46 -418.50356 -293.33525 47 -445.22431 -418.50356 48 -402.27237 -445.22431 49 -317.83678 -402.27237 50 -165.92608 -317.83678 51 -251.89351 -165.92608 52 -267.07471 -251.89351 53 -224.57491 -267.07471 54 -251.87881 -224.57491 55 -300.51930 -251.87881 56 -348.29574 -300.51930 57 -484.77560 -348.29574 58 -524.80409 -484.77560 59 -593.81156 -524.80409 60 -531.41695 -593.81156 61 -446.64282 -531.41695 62 -463.51661 -446.64282 63 -547.57495 -463.51661 64 -567.66055 -547.57495 65 -550.60222 -567.66055 66 -459.66351 -550.60222 67 -433.74160 -459.66351 68 -371.39312 -433.74160 69 -377.28719 -371.39312 70 -388.32342 -377.28719 71 -377.73499 -388.32342 72 -331.03704 -377.73499 73 -282.14414 -331.03704 74 -211.64337 -282.14414 75 -215.52753 -211.64337 76 -202.78130 -215.52753 77 -193.99734 -202.78130 78 -164.36850 -193.99734 79 -165.96040 -164.36850 80 -121.68543 -165.96040 81 -145.59192 -121.68543 82 -191.47984 -145.59192 83 -119.14581 -191.47984 84 -109.08082 -119.14581 85 -51.05433 -109.08082 86 -23.65687 -51.05433 87 16.18801 -23.65687 88 40.21675 16.18801 89 50.92498 40.21675 90 59.51718 50.92498 91 125.44650 59.51718 92 387.58914 125.44650 93 428.10698 387.58914 94 372.42890 428.10698 95 467.26655 372.42890 96 471.58252 467.26655 97 516.90237 471.58252 98 628.62280 516.90237 99 633.95180 628.62280 100 635.82699 633.95180 101 667.50083 635.82699 102 733.42317 667.50083 103 691.01362 733.42317 104 735.86321 691.01362 105 723.60744 735.86321 106 694.35484 723.60744 107 764.58215 694.35484 108 781.15839 764.58215 109 801.52432 781.15839 110 957.66005 801.52432 111 922.08135 957.66005 112 880.55320 922.08135 113 945.67360 880.55320 114 1006.88731 945.67360 115 1049.92274 1006.88731 116 1116.15462 1049.92274 117 1045.98906 1116.15462 118 957.17574 1045.98906 119 1048.13972 957.17574 120 1034.21698 1048.13972 121 1026.64210 1034.21698 122 1049.85324 1026.64210 123 873.17645 1049.85324 124 800.22322 873.17645 125 792.83720 800.22322 126 839.53802 792.83720 127 848.20611 839.53802 128 800.16146 848.20611 129 709.52186 800.16146 130 674.61818 709.52186 131 670.26252 674.61818 132 598.67014 670.26252 133 563.68705 598.67014 134 580.87725 563.68705 135 625.68740 580.87725 136 560.05880 625.68740 137 599.47568 560.05880 138 723.23404 599.47568 139 775.10997 723.23404 140 854.40217 775.10997 141 912.32986 854.40217 142 958.46306 912.32986 143 1030.04136 958.46306 144 1063.71572 1030.04136 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/7182c1260631971.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/888u81260631971.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/9dfbd1260631971.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/www/html/rcomp/tmp/10imlm1260631971.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/11o0jh1260631971.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/12eanx1260631971.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/13exxp1260631971.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/14g1y71260631971.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/15zwuk1260631971.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/16p4h81260631971.tab") + } > > try(system("convert tmp/1m66u1260631971.ps tmp/1m66u1260631971.png",intern=TRUE)) character(0) > try(system("convert tmp/2fcje1260631971.ps tmp/2fcje1260631971.png",intern=TRUE)) character(0) > try(system("convert tmp/3ttan1260631971.ps tmp/3ttan1260631971.png",intern=TRUE)) character(0) > try(system("convert tmp/4b89n1260631971.ps tmp/4b89n1260631971.png",intern=TRUE)) character(0) > try(system("convert tmp/5ekuh1260631971.ps tmp/5ekuh1260631971.png",intern=TRUE)) character(0) > try(system("convert tmp/6uz681260631971.ps tmp/6uz681260631971.png",intern=TRUE)) character(0) > try(system("convert tmp/7182c1260631971.ps tmp/7182c1260631971.png",intern=TRUE)) character(0) > try(system("convert tmp/888u81260631971.ps tmp/888u81260631971.png",intern=TRUE)) character(0) > try(system("convert tmp/9dfbd1260631971.ps tmp/9dfbd1260631971.png",intern=TRUE)) character(0) > try(system("convert tmp/10imlm1260631971.ps tmp/10imlm1260631971.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 3.559 1.683 5.847