R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(6.9,6.8,6.7,6.6,6.5,6.5,7.0,7.5,7.6,7.6,7.6,7.8,8.0,8.0,8.0,7.9,7.9,8.0,8.5,9.2,9.4,9.5,9.5,9.6,9.7,9.7,9.6,9.5,9.4,9.3,9.6,10.2,10.2,10.1,9.9,9.8,9.8,9.7,9.5,9.3,9.1,9.0,9.5,10.0,10.2,10.1,10.0,9.9,10.0,9.9,9.7,9.5,9.2,9.0,9.3,9.8,9.8,9.6,9.4,9.3,9.2,9.2,9.0,8.8,8.7,8.7,9.1,9.7,9.8,9.6,9.4,9.4,9.5,9.4,9.3,9.2,9.0,8.9,9.2,9.8,9.9,9.6,9.2,9.1,9.1,9.0,8.9,8.7,8.5,8.3,8.5,8.7,8.4,8.1,7.8,7.7,7.5,7.2,6.8,6.7,6.4,6.3,6.8,7.3,7.1,7.0,6.8,6.6,6.3,6.1,6.1,6.3,6.3,6.0,6.2,6.4,6.8,7.5,7.5,7.6,7.6,7.4,7.3,7.1,6.9,6.8,7.5,7.6,7.8,8.0,8.1,8.2,8.3,8.2,8.0,7.9,7.6,7.6,8.3,8.4,8.4,8.4,8.4,8.6,8.9,8.8,8.3,7.5,7.2,7.4,8.8,9.3,9.3,8.7,8.2,8.3,8.5,8.6,8.5,8.2,8.1,7.9,8.6,8.7,8.7,8.5,8.4,8.5,8.7,8.7,8.6,8.5,8.3,8.0,8.2,8.1,8.1,8.0,7.9,7.9) > par10 = 'FALSE' > par9 = '0' > par8 = '0' > par7 = '0' > par6 = '0' > par5 = '12' > par4 = '0' > par3 = '1' > par2 = '1' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") sigma^2 estimated as 0.08132: log likelihood = -27.43, aic = 56.86 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 169 End = 180 Frequency = 1 [1] 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 $se Time Series: Start = 169 End = 180 Frequency = 1 [1] 0.2851620 0.4032800 0.4939151 0.5703240 0.6376416 0.6985014 0.7544677 [8] 0.8065599 0.8554860 0.9017614 0.9457754 0.9878301 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 169 End = 180 Frequency = 1 [1] 7.941082 7.709571 7.531926 7.382165 7.250222 7.130937 7.021243 6.919143 [9] 6.823247 6.732548 6.646280 6.563853 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 169 End = 180 Frequency = 1 [1] 9.058918 9.290429 9.468074 9.617835 9.749778 9.869063 9.978757 [8] 10.080857 10.176753 10.267452 10.353720 10.436147 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 6.9 6.8 6.7 6.6 6.5 6.5 7.0 7.5 7.6 7.6 7.6 7.8 8.0 8.0 8.0 [16] 7.9 7.9 8.0 8.5 9.2 9.4 9.5 9.5 9.6 9.7 9.7 9.6 9.5 9.4 9.3 [31] 9.6 10.2 10.2 10.1 9.9 9.8 9.8 9.7 9.5 9.3 9.1 9.0 9.5 10.0 10.2 [46] 10.1 10.0 9.9 10.0 9.9 9.7 9.5 9.2 9.0 9.3 9.8 9.8 9.6 9.4 9.3 [61] 9.2 9.2 9.0 8.8 8.7 8.7 9.1 9.7 9.8 9.6 9.4 9.4 9.5 9.4 9.3 [76] 9.2 9.0 8.9 9.2 9.8 9.9 9.6 9.2 9.1 9.1 9.0 8.9 8.7 8.5 8.3 [91] 8.5 8.7 8.4 8.1 7.8 7.7 7.5 7.2 6.8 6.7 6.4 6.3 6.8 7.3 7.1 [106] 7.0 6.8 6.6 6.3 6.1 6.1 6.3 6.3 6.0 6.2 6.4 6.8 7.5 7.5 7.6 [121] 7.6 7.4 7.3 7.1 6.9 6.8 7.5 7.6 7.8 8.0 8.1 8.2 8.3 8.2 8.0 [136] 7.9 7.6 7.6 8.3 8.4 8.4 8.4 8.4 8.6 8.9 8.8 8.3 7.5 7.2 7.4 [151] 8.8 9.3 9.3 8.7 8.2 8.3 8.5 8.6 8.5 8.2 8.1 7.9 8.6 8.7 8.7 [166] 8.5 8.4 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 169 End = 180 Frequency = 1 [1] 0.03354847 0.04744470 0.05810766 0.06709694 0.07501666 0.08217663 [7] 0.08876091 0.09488940 0.10064541 0.10608958 0.11126769 0.11621531 > postscript(file="/var/www/html/rcomp/tmp/1um911260645937.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/20szv1260645937.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3cyoz1260645937.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/48oln1260645937.tab") > > try(system("convert tmp/1um911260645937.ps tmp/1um911260645937.png",intern=TRUE)) character(0) > try(system("convert tmp/20szv1260645937.ps tmp/20szv1260645937.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.550 0.294 0.671