Home » date » 2009 » Dec » 14 »

*The author of this computation has been verified*
R Software Module: /rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Mon, 14 Dec 2009 02:56:03 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2009/Dec/14/t12607846799mdxxrumay32f64.htm/, Retrieved Mon, 14 Dec 2009 10:58:12 +0100
 
BibTeX entries for LaTeX users:
@Manual{KEY,
    author = {{YOUR NAME}},
    publisher = {Office for Research Development and Education},
    title = {Statistical Computations at FreeStatistics.org, URL http://www.freestatistics.org/blog/date/2009/Dec/14/t12607846799mdxxrumay32f64.htm/},
    year = {2009},
}
@Manual{R,
    title = {R: A Language and Environment for Statistical Computing},
    author = {{R Development Core Team}},
    organization = {R Foundation for Statistical Computing},
    address = {Vienna, Austria},
    year = {2009},
    note = {{ISBN} 3-900051-07-0},
    url = {http://www.R-project.org},
}
 
Original text written by user:
 
IsPrivate?
No (this computation is public)
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
97,4 123,5 102,9 112,7 97,0 95,1 111,4 124,0 97,4 102,9 112,7 97,0 87,4 127,4 111,4 97,4 102,9 112,7 96,8 127,6 87,4 111,4 97,4 102,9 114,1 128,4 96,8 87,4 111,4 97,4 110,3 131,4 114,1 96,8 87,4 111,4 103,9 135,1 110,3 114,1 96,8 87,4 101,6 134,0 103,9 110,3 114,1 96,8 94,6 144,5 101,6 103,9 110,3 114,1 95,9 147,3 94,6 101,6 103,9 110,3 104,7 150,9 95,9 94,6 101,6 103,9 102,8 148,7 104,7 95,9 94,6 101,6 98,1 141,4 102,8 104,7 95,9 94,6 113,9 138,9 98,1 102,8 104,7 95,9 80,9 139,8 113,9 98,1 102,8 104,7 95,7 145,6 80,9 113,9 98,1 102,8 113,2 147,9 95,7 80,9 113,9 98,1 105,9 148,5 113,2 95,7 80,9 113,9 108,8 151,1 105,9 113,2 95,7 80,9 102,3 157,5 108,8 105,9 113,2 95,7 99,0 167,5 102,3 108,8 105,9 113,2 100,7 172,3 99,0 102,3 108,8 105,9 115,5 173,5 100,7 99,0 102,3 108,8 100,7 187,5 115,5 100,7 99,0 102,3 109,9 205,5 100,7 115,5 100,7 99,0 114,6 195,1 109,9 100,7 115,5 100,7 85,4 204,5 114,6 109,9 100,7 115,5 100,5 204,5 85,4 114,6 109,9 100,7 114,8 201,7 100,5 85,4 114,6 109,9 11 etc...
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
TIP[t] = + 102.462591005717 + 0.154745690029901Grondstofprijzen[t] -0.356082029627551Y1[t] -0.126709222006954Y2[t] + 0.333175994767932Y3[t] -0.0356040497354635Y4[t] -1.66280543858118M1[t] + 4.5877159356974M2[t] -16.1108173064501M3[t] -12.1798134767917M4[t] + 0.773361771582027M5[t] + 17.3617852801477M6[t] + 8.96502288148342M7[t] -5.06452385668755M8[t] -8.13728355878094M9[t] -6.99075060859638M10[t] + 3.88854064345828M11[t] -0.193613167038276t + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)102.46259100571733.7860013.03270.0043520.002176
Grondstofprijzen0.1547456900299010.0316284.89271.9e-059e-06
Y1-0.3560820296275510.156319-2.27790.0284430.014221
Y2-0.1267092220069540.159644-0.79370.4322990.216149
Y30.3331759947679320.1555762.14160.0387020.019351
Y4-0.03560404973546350.15681-0.22710.82160.4108
M1-1.662805438581182.701879-0.61540.5419420.270971
M24.58771593569743.1491881.45680.1533880.076694
M3-16.11081730645013.098392-5.19977e-064e-06
M4-12.17981347679174.461054-2.73030.0095390.00477
M50.7733617715820274.2140360.18350.8553650.427683
M617.36178528014773.3007355.266e-063e-06
M78.965022881483423.9766972.25440.0300180.015009
M8-5.064523856687554.073894-1.24320.2214230.110711
M9-8.137283558780944.704216-1.72980.0917850.045892
M10-6.990750608596384.067739-1.71860.0938290.046914
M113.888540643458283.1876841.21990.2300340.115017
t-0.1936131670382760.067808-2.85530.0069290.003465


Multiple Linear Regression - Regression Statistics
Multiple R0.953775966980205
R-squared0.909688595189026
Adjusted R-squared0.869286124615695
F-TEST (value)22.5156675391407
F-TEST (DF numerator)17
F-TEST (DF denominator)38
p-value8.99280649946377e-15
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation3.28423946988512
Sum Squared Residuals409.876698030949


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
197.497.7284213125789-0.328421312578872
2111.4112.226119326813-0.826119326812827
387.483.74775224040873.65224775959126
496.892.80458336018263.99541663981735
5114.1110.2420784435063.85792155649397
6110.3111.255159484974-0.955159484974221
7103.9106.384736688716-2.48473668871642
8101.6100.1810431996891.41895680031111
994.698.2874089243174-3.68740892431741
1095.9100.460591080036-4.56059108003627
11104.7111.588972695034-6.88897269503388
12102.8101.6177918681561.18220813184390
1398.198.875601569296-0.775601569296084
14113.9109.3456421018264.55435789817398
1580.982.6158540612534-1.71585406125336
1695.795.50119151513440.198808484865657
17113.2112.9595787223700.240421277629707
18105.9109.783152660568-3.88315266056845
19108.8108.0830416839390.716958316061201
20102.3100.0462336020062.25376639799426
219997.21913844975551.78086155024451
22100.7102.139638133757-1.4396381337573
23115.5110.5549163188414.94508368115872
24100.7102.28572799341-1.58572799341010
25109.9107.2933419163462.60665808365379
26114.6115.210714598420-0.610714598420099
2785.487.4759226351517-2.07592263515166
28100.5104.607534307413-4.10753430741344
29114.8116.495249009735-1.69524900973521
30116.5116.808851151462-0.308851151461769
31112.9111.8098917579521.09010824204768
32102103.498999816286-1.49899981628597
33106104.7047083942231.29529160577704
34105.3104.9579783041370.342021695863387
35118.8113.2598697992085.5401302007922
36106.1108.39295653276-2.29295653276004
37109.3109.0808877940580.219112205941876
38117.2118.691204472882-1.49120447288240
3992.590.2708895083132.22911049168705
40104.2101.7579065944742.44209340552557
41112.5115.921811267238-3.42181126723753
42122.4120.2499742348672.15002576513281
43113.3110.8853813532572.4146186467434
4410099.85182188823690.148178111763143
45110.7110.0887442317040.61125576829586
46112.8107.1417924820705.65820751793018
47109.8113.396241186917-3.59624118691704
48117.3114.6035236056742.69647639432623
49109.1110.821747407721-1.72174740772072
50115.9117.526319500059-1.62631950005866
519698.0895815548733-2.08958155487328
5299.8102.328784222795-2.52878422279513
53116.8115.7812825571511.01871744284906
54115.7112.7028624681282.99713753187163
5599.4101.136948516136-1.73694851613586
5694.396.6219014937825-2.32190149378255


Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
210.2751027901634870.5502055803269750.724897209836513
220.2627284888622740.5254569777245480.737271511137726
230.740372739963570.5192545200728620.259627260036431
240.8369975094842680.3260049810314640.163002490515732
250.7967521491930180.4064957016139630.203247850806982
260.7358288749147450.528342250170510.264171125085255
270.7533440871342470.4933118257315050.246655912865753
280.7119901736654170.5760196526691670.288009826334583
290.6298872827119910.7402254345760180.370112717288009
300.5574308838250160.8851382323499670.442569116174984
310.4452511747186720.8905023494373430.554748825281328
320.3580873100396160.7161746200792320.641912689960384
330.2472738199874650.4945476399749290.752726180012535
340.2876186618785120.5752373237570240.712381338121488
350.3540150378161470.7080300756322940.645984962183853


Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level00OK
 
Charts produced by software:
http://www.freestatistics.org/blog/date/2009/Dec/14/t12607846799mdxxrumay32f64/1052fa1260784558.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Dec/14/t12607846799mdxxrumay32f64/1052fa1260784558.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Dec/14/t12607846799mdxxrumay32f64/1nddu1260784558.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Dec/14/t12607846799mdxxrumay32f64/1nddu1260784558.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Dec/14/t12607846799mdxxrumay32f64/24fx41260784558.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Dec/14/t12607846799mdxxrumay32f64/24fx41260784558.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Dec/14/t12607846799mdxxrumay32f64/39a2x1260784558.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Dec/14/t12607846799mdxxrumay32f64/39a2x1260784558.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Dec/14/t12607846799mdxxrumay32f64/4l6gr1260784558.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Dec/14/t12607846799mdxxrumay32f64/4l6gr1260784558.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Dec/14/t12607846799mdxxrumay32f64/5krwt1260784558.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Dec/14/t12607846799mdxxrumay32f64/5krwt1260784558.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Dec/14/t12607846799mdxxrumay32f64/6w7641260784558.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Dec/14/t12607846799mdxxrumay32f64/6w7641260784558.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Dec/14/t12607846799mdxxrumay32f64/7dff61260784558.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Dec/14/t12607846799mdxxrumay32f64/7dff61260784558.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Dec/14/t12607846799mdxxrumay32f64/8fgs81260784558.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Dec/14/t12607846799mdxxrumay32f64/8fgs81260784558.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Dec/14/t12607846799mdxxrumay32f64/9f4v31260784558.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Dec/14/t12607846799mdxxrumay32f64/9f4v31260784558.ps (open in new window)


 
Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
 
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

  • personalize online software applications according to your needs
  • enforce strict security rules with respect to the data that you upload (e.g. statistical data)
  • manage user sessions of online applications
  • alert you about important changes or upgrades in resources or applications

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by