R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(6802.96,7132.68,7073.29,7264.5,7105.33,7218.71,7225.72,7354.25,7745.46,8070.26,8366.33,8667.51,8854.34,9218.1,9332.9,9358.31,9248.66,9401.2,9652.04,9957.38,10110.63,10169.26,10343.78,10750.21,11337.5,11786.96,12083.04,12007.74,11745.93,11051.51,11445.9,11924.88,12247.63,12690.91,12910.7,13202.12,13654.67,13862.82,13523.93,14211.17,14510.35,14289.23,14111.82,13086.59,13351.54,13747.69,12855.61,12926.93,12121.95,11731.65,11639.51,12163.78,12029.53,11234.18,9852.13,9709.04,9332.75,7108.6,6691.49,6143.05) > par10 = 'FALSE' > par9 = '0' > par8 = '0' > par7 = '1' > par6 = '1' > par5 = '1' > par4 = '0' > par3 = '1' > par2 = '1' > par1 = '20' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ma1 0.6741 -0.2509 s.e. 0.2755 0.3928 sigma^2 estimated as 80032: log likelihood = -275.65, aic = 557.29 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 41 End = 60 Frequency = 1 [1] 14475.23 14653.22 14773.20 14854.08 14908.60 14945.35 14970.12 14986.82 [9] 14998.08 15005.66 15010.78 15014.23 15016.55 15018.12 15019.17 15019.89 [17] 15020.37 15020.69 15020.91 15021.05 $se Time Series: Start = 41 End = 60 Frequency = 1 [1] 282.8998 492.0705 689.7313 874.5670 1046.3198 1205.6984 1353.8368 [8] 1491.9777 1621.3179 1742.9427 1857.8050 1966.7277 2070.4145 2169.4652 [15] 2264.3903 2355.6250 2443.5412 2528.4582 2610.6511 2690.3579 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 41 End = 60 Frequency = 1 [1] 13920.742 13688.762 13421.330 13139.930 12857.813 12582.181 12316.602 [8] 12062.545 11820.294 11589.497 11369.482 11159.441 10958.539 10765.966 [15] 10580.969 10402.861 10231.025 10064.911 9904.031 9747.953 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 41 End = 60 Frequency = 1 [1] 15029.71 15617.68 16125.08 16568.23 16959.39 17308.52 17623.64 17911.10 [9] 18175.86 18421.83 18652.08 18869.01 19074.56 19270.27 19457.38 19636.91 [17] 19809.71 19976.47 20137.78 20294.16 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 6802.96 7132.68 7073.29 7264.50 7105.33 7218.71 7225.72 7354.25 [9] 7745.46 8070.26 8366.33 8667.51 8854.34 9218.10 9332.90 9358.31 [17] 9248.66 9401.20 9652.04 9957.38 10110.63 10169.26 10343.78 10750.21 [25] 11337.50 11786.96 12083.04 12007.74 11745.93 11051.51 11445.90 11924.88 [33] 12247.63 12690.91 12910.70 13202.12 13654.67 13862.82 13523.93 14211.17 [41] 14475.23 14653.22 14773.20 14854.08 14908.60 14945.35 14970.12 14986.82 [49] 14998.08 15005.66 15010.78 15014.23 15016.55 15018.12 15019.17 15019.89 [57] 15020.37 15020.69 15020.91 15021.05 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 41 End = 60 Frequency = 1 [1] 0.01954372 0.03358105 0.04668800 0.05887722 0.07018230 0.08067381 [7] 0.09043592 0.09955264 0.10810172 0.11615231 0.12376473 0.13099093 [13] 0.13787550 0.14445653 0.15076663 0.15683375 0.16268187 0.16833171 [19] 0.17380116 0.17910580 > postscript(file="/var/www/html/rcomp/tmp/1nxp71260797837.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2d3rt1260797837.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/35yfl1260797837.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4krvt1260797837.tab") > > try(system("convert tmp/1nxp71260797837.ps tmp/1nxp71260797837.png",intern=TRUE)) character(0) > try(system("convert tmp/2d3rt1260797837.ps tmp/2d3rt1260797837.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.586 0.304 0.715