R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(8.7,0,8.2,0,8.3,0,8.5,0,8.6,0,8.5,0,8.2,0,8.1,0,7.9,0,8.6,0,8.7,0,8.7,0,8.5,0,8.4,0,8.5,0,8.7,0,8.7,0,8.6,0,8.5,0,8.3,0,8,0,8.2,0,8.1,0,8.1,0,8,0,7.9,0,7.9,0,8,0,8,0,7.9,0,8,0,7.7,0,7.2,0,7.5,0,7.3,0,7,0,7,0,7,0,7.2,0,7.3,0,7.1,0,6.8,0,6.4,0,6.1,0,6.5,0,7.7,0,7.9,0,7.5,0,6.9,1,6.6,1,6.9,1,7.7,1,8,1,8,1,7.7,1,7.3,1,7.4,1,8.1,1,8.3,1,8.2,1),dim=c(2,60),dimnames=list(c('Y','X'),1:60)) > y <- array(NA,dim=c(2,60),dimnames=list(c('Y','X'),1:60)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'No Linear Trend' > par2 = 'Include Monthly Dummies' > par1 = '1' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > library(lmtest) Loading required package: zoo Attaching package: 'zoo' The following object(s) are masked from package:base : as.Date.numeric > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x Y X M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 1 8.7 0 1 0 0 0 0 0 0 0 0 0 0 2 8.2 0 0 1 0 0 0 0 0 0 0 0 0 3 8.3 0 0 0 1 0 0 0 0 0 0 0 0 4 8.5 0 0 0 0 1 0 0 0 0 0 0 0 5 8.6 0 0 0 0 0 1 0 0 0 0 0 0 6 8.5 0 0 0 0 0 0 1 0 0 0 0 0 7 8.2 0 0 0 0 0 0 0 1 0 0 0 0 8 8.1 0 0 0 0 0 0 0 0 1 0 0 0 9 7.9 0 0 0 0 0 0 0 0 0 1 0 0 10 8.6 0 0 0 0 0 0 0 0 0 0 1 0 11 8.7 0 0 0 0 0 0 0 0 0 0 0 1 12 8.7 0 0 0 0 0 0 0 0 0 0 0 0 13 8.5 0 1 0 0 0 0 0 0 0 0 0 0 14 8.4 0 0 1 0 0 0 0 0 0 0 0 0 15 8.5 0 0 0 1 0 0 0 0 0 0 0 0 16 8.7 0 0 0 0 1 0 0 0 0 0 0 0 17 8.7 0 0 0 0 0 1 0 0 0 0 0 0 18 8.6 0 0 0 0 0 0 1 0 0 0 0 0 19 8.5 0 0 0 0 0 0 0 1 0 0 0 0 20 8.3 0 0 0 0 0 0 0 0 1 0 0 0 21 8.0 0 0 0 0 0 0 0 0 0 1 0 0 22 8.2 0 0 0 0 0 0 0 0 0 0 1 0 23 8.1 0 0 0 0 0 0 0 0 0 0 0 1 24 8.1 0 0 0 0 0 0 0 0 0 0 0 0 25 8.0 0 1 0 0 0 0 0 0 0 0 0 0 26 7.9 0 0 1 0 0 0 0 0 0 0 0 0 27 7.9 0 0 0 1 0 0 0 0 0 0 0 0 28 8.0 0 0 0 0 1 0 0 0 0 0 0 0 29 8.0 0 0 0 0 0 1 0 0 0 0 0 0 30 7.9 0 0 0 0 0 0 1 0 0 0 0 0 31 8.0 0 0 0 0 0 0 0 1 0 0 0 0 32 7.7 0 0 0 0 0 0 0 0 1 0 0 0 33 7.2 0 0 0 0 0 0 0 0 0 1 0 0 34 7.5 0 0 0 0 0 0 0 0 0 0 1 0 35 7.3 0 0 0 0 0 0 0 0 0 0 0 1 36 7.0 0 0 0 0 0 0 0 0 0 0 0 0 37 7.0 0 1 0 0 0 0 0 0 0 0 0 0 38 7.0 0 0 1 0 0 0 0 0 0 0 0 0 39 7.2 0 0 0 1 0 0 0 0 0 0 0 0 40 7.3 0 0 0 0 1 0 0 0 0 0 0 0 41 7.1 0 0 0 0 0 1 0 0 0 0 0 0 42 6.8 0 0 0 0 0 0 1 0 0 0 0 0 43 6.4 0 0 0 0 0 0 0 1 0 0 0 0 44 6.1 0 0 0 0 0 0 0 0 1 0 0 0 45 6.5 0 0 0 0 0 0 0 0 0 1 0 0 46 7.7 0 0 0 0 0 0 0 0 0 0 1 0 47 7.9 0 0 0 0 0 0 0 0 0 0 0 1 48 7.5 0 0 0 0 0 0 0 0 0 0 0 0 49 6.9 1 1 0 0 0 0 0 0 0 0 0 0 50 6.6 1 0 1 0 0 0 0 0 0 0 0 0 51 6.9 1 0 0 1 0 0 0 0 0 0 0 0 52 7.7 1 0 0 0 1 0 0 0 0 0 0 0 53 8.0 1 0 0 0 0 1 0 0 0 0 0 0 54 8.0 1 0 0 0 0 0 1 0 0 0 0 0 55 7.7 1 0 0 0 0 0 0 1 0 0 0 0 56 7.3 1 0 0 0 0 0 0 0 1 0 0 0 57 7.4 1 0 0 0 0 0 0 0 0 1 0 0 58 8.1 1 0 0 0 0 0 0 0 0 0 1 0 59 8.3 1 0 0 0 0 0 0 0 0 0 0 1 60 8.2 1 0 0 0 0 0 0 0 0 0 0 0 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) X M1 M2 M3 M4 7.9587 -0.2937 -0.0800 -0.2800 -0.1400 0.1400 M5 M6 M7 M8 M9 M10 0.1800 0.0600 -0.1400 -0.4000 -0.5000 0.1200 M11 0.1600 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -1.4587 -0.4887 0.1481 0.5212 0.8212 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 7.9588 0.3093 25.731 <2e-16 *** X -0.2938 0.2209 -1.330 0.190 M1 -0.0800 0.4329 -0.185 0.854 M2 -0.2800 0.4329 -0.647 0.521 M3 -0.1400 0.4329 -0.323 0.748 M4 0.1400 0.4329 0.323 0.748 M5 0.1800 0.4329 0.416 0.679 M6 0.0600 0.4329 0.139 0.890 M7 -0.1400 0.4329 -0.323 0.748 M8 -0.4000 0.4329 -0.924 0.360 M9 -0.5000 0.4329 -1.155 0.254 M10 0.1200 0.4329 0.277 0.783 M11 0.1600 0.4329 0.370 0.713 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.6845 on 47 degrees of freedom Multiple R-squared: 0.1423, Adjusted R-squared: -0.0767 F-statistic: 0.6498 on 12 and 47 DF, p-value: 0.7887 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 0.0205197581 0.0410395162 0.97948024 [2,] 0.0050715748 0.0101431496 0.99492843 [3,] 0.0012745706 0.0025491412 0.99872543 [4,] 0.0009485293 0.0018970586 0.99905147 [5,] 0.0004784593 0.0009569185 0.99952154 [6,] 0.0001643124 0.0003286247 0.99983569 [7,] 0.0002129110 0.0004258221 0.99978709 [8,] 0.0006834568 0.0013669137 0.99931654 [9,] 0.0013103971 0.0026207942 0.99868960 [10,] 0.0040642700 0.0081285400 0.99593573 [11,] 0.0062594667 0.0125189333 0.99374053 [12,] 0.0107931501 0.0215863003 0.98920685 [13,] 0.0173982859 0.0347965718 0.98260171 [14,] 0.0278591436 0.0557182872 0.97214086 [15,] 0.0427001056 0.0854002113 0.95729989 [16,] 0.0775543339 0.1551086678 0.92244567 [17,] 0.2183653985 0.4367307969 0.78163460 [18,] 0.2970529972 0.5941059945 0.70294700 [19,] 0.3472130125 0.6944260250 0.65278699 [20,] 0.4838418722 0.9676837444 0.51615813 [21,] 0.6713525438 0.6572949124 0.32864746 [22,] 0.7986166564 0.4027666873 0.20138334 [23,] 0.9236418309 0.1527163383 0.07635817 [24,] 0.9871291905 0.0257416189 0.01287081 [25,] 0.9873462727 0.0253074546 0.01265373 [26,] 0.9770631723 0.0458736554 0.02293683 [27,] 0.9702663810 0.0594672380 0.02973362 [28,] 0.9754864781 0.0490270438 0.02451352 [29,] 0.9839615459 0.0320769081 0.01603845 > postscript(file="/var/www/html/rcomp/tmp/1s9z81260889069.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/206ba1260889069.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/3wbit1260889069.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/4i5gq1260889069.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/5cnru1260889069.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 60 Frequency = 1 1 2 3 4 5 6 7 8 0.82125 0.52125 0.48125 0.40125 0.46125 0.48125 0.38125 0.54125 9 10 11 12 13 14 15 16 0.44125 0.52125 0.58125 0.74125 0.62125 0.72125 0.68125 0.60125 17 18 19 20 21 22 23 24 0.56125 0.58125 0.68125 0.74125 0.54125 0.12125 -0.01875 0.14125 25 26 27 28 29 30 31 32 0.12125 0.22125 0.08125 -0.09875 -0.13875 -0.11875 0.18125 0.14125 33 34 35 36 37 38 39 40 -0.25875 -0.57875 -0.81875 -0.95875 -0.87875 -0.67875 -0.61875 -0.79875 41 42 43 44 45 46 47 48 -1.03875 -1.21875 -1.41875 -1.45875 -0.95875 -0.37875 -0.21875 -0.45875 49 50 51 52 53 54 55 56 -0.68500 -0.78500 -0.62500 -0.10500 0.15500 0.27500 0.17500 0.03500 57 58 59 60 0.23500 0.31500 0.47500 0.53500 > postscript(file="/var/www/html/rcomp/tmp/66xul1260889069.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 60 Frequency = 1 lag(myerror, k = 1) myerror 0 0.82125 NA 1 0.52125 0.82125 2 0.48125 0.52125 3 0.40125 0.48125 4 0.46125 0.40125 5 0.48125 0.46125 6 0.38125 0.48125 7 0.54125 0.38125 8 0.44125 0.54125 9 0.52125 0.44125 10 0.58125 0.52125 11 0.74125 0.58125 12 0.62125 0.74125 13 0.72125 0.62125 14 0.68125 0.72125 15 0.60125 0.68125 16 0.56125 0.60125 17 0.58125 0.56125 18 0.68125 0.58125 19 0.74125 0.68125 20 0.54125 0.74125 21 0.12125 0.54125 22 -0.01875 0.12125 23 0.14125 -0.01875 24 0.12125 0.14125 25 0.22125 0.12125 26 0.08125 0.22125 27 -0.09875 0.08125 28 -0.13875 -0.09875 29 -0.11875 -0.13875 30 0.18125 -0.11875 31 0.14125 0.18125 32 -0.25875 0.14125 33 -0.57875 -0.25875 34 -0.81875 -0.57875 35 -0.95875 -0.81875 36 -0.87875 -0.95875 37 -0.67875 -0.87875 38 -0.61875 -0.67875 39 -0.79875 -0.61875 40 -1.03875 -0.79875 41 -1.21875 -1.03875 42 -1.41875 -1.21875 43 -1.45875 -1.41875 44 -0.95875 -1.45875 45 -0.37875 -0.95875 46 -0.21875 -0.37875 47 -0.45875 -0.21875 48 -0.68500 -0.45875 49 -0.78500 -0.68500 50 -0.62500 -0.78500 51 -0.10500 -0.62500 52 0.15500 -0.10500 53 0.27500 0.15500 54 0.17500 0.27500 55 0.03500 0.17500 56 0.23500 0.03500 57 0.31500 0.23500 58 0.47500 0.31500 59 0.53500 0.47500 60 NA 0.53500 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] 0.52125 0.82125 [2,] 0.48125 0.52125 [3,] 0.40125 0.48125 [4,] 0.46125 0.40125 [5,] 0.48125 0.46125 [6,] 0.38125 0.48125 [7,] 0.54125 0.38125 [8,] 0.44125 0.54125 [9,] 0.52125 0.44125 [10,] 0.58125 0.52125 [11,] 0.74125 0.58125 [12,] 0.62125 0.74125 [13,] 0.72125 0.62125 [14,] 0.68125 0.72125 [15,] 0.60125 0.68125 [16,] 0.56125 0.60125 [17,] 0.58125 0.56125 [18,] 0.68125 0.58125 [19,] 0.74125 0.68125 [20,] 0.54125 0.74125 [21,] 0.12125 0.54125 [22,] -0.01875 0.12125 [23,] 0.14125 -0.01875 [24,] 0.12125 0.14125 [25,] 0.22125 0.12125 [26,] 0.08125 0.22125 [27,] -0.09875 0.08125 [28,] -0.13875 -0.09875 [29,] -0.11875 -0.13875 [30,] 0.18125 -0.11875 [31,] 0.14125 0.18125 [32,] -0.25875 0.14125 [33,] -0.57875 -0.25875 [34,] -0.81875 -0.57875 [35,] -0.95875 -0.81875 [36,] -0.87875 -0.95875 [37,] -0.67875 -0.87875 [38,] -0.61875 -0.67875 [39,] -0.79875 -0.61875 [40,] -1.03875 -0.79875 [41,] -1.21875 -1.03875 [42,] -1.41875 -1.21875 [43,] -1.45875 -1.41875 [44,] -0.95875 -1.45875 [45,] -0.37875 -0.95875 [46,] -0.21875 -0.37875 [47,] -0.45875 -0.21875 [48,] -0.68500 -0.45875 [49,] -0.78500 -0.68500 [50,] -0.62500 -0.78500 [51,] -0.10500 -0.62500 [52,] 0.15500 -0.10500 [53,] 0.27500 0.15500 [54,] 0.17500 0.27500 [55,] 0.03500 0.17500 [56,] 0.23500 0.03500 [57,] 0.31500 0.23500 [58,] 0.47500 0.31500 [59,] 0.53500 0.47500 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 0.52125 0.82125 2 0.48125 0.52125 3 0.40125 0.48125 4 0.46125 0.40125 5 0.48125 0.46125 6 0.38125 0.48125 7 0.54125 0.38125 8 0.44125 0.54125 9 0.52125 0.44125 10 0.58125 0.52125 11 0.74125 0.58125 12 0.62125 0.74125 13 0.72125 0.62125 14 0.68125 0.72125 15 0.60125 0.68125 16 0.56125 0.60125 17 0.58125 0.56125 18 0.68125 0.58125 19 0.74125 0.68125 20 0.54125 0.74125 21 0.12125 0.54125 22 -0.01875 0.12125 23 0.14125 -0.01875 24 0.12125 0.14125 25 0.22125 0.12125 26 0.08125 0.22125 27 -0.09875 0.08125 28 -0.13875 -0.09875 29 -0.11875 -0.13875 30 0.18125 -0.11875 31 0.14125 0.18125 32 -0.25875 0.14125 33 -0.57875 -0.25875 34 -0.81875 -0.57875 35 -0.95875 -0.81875 36 -0.87875 -0.95875 37 -0.67875 -0.87875 38 -0.61875 -0.67875 39 -0.79875 -0.61875 40 -1.03875 -0.79875 41 -1.21875 -1.03875 42 -1.41875 -1.21875 43 -1.45875 -1.41875 44 -0.95875 -1.45875 45 -0.37875 -0.95875 46 -0.21875 -0.37875 47 -0.45875 -0.21875 48 -0.68500 -0.45875 49 -0.78500 -0.68500 50 -0.62500 -0.78500 51 -0.10500 -0.62500 52 0.15500 -0.10500 53 0.27500 0.15500 54 0.17500 0.27500 55 0.03500 0.17500 56 0.23500 0.03500 57 0.31500 0.23500 58 0.47500 0.31500 59 0.53500 0.47500 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/7ve3z1260889069.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/8we1y1260889069.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/90b931260889069.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/www/html/rcomp/tmp/103d3i1260889069.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/113n3m1260889069.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/12xacb1260889069.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/13rwb71260889069.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/144a611260889069.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/1545tz1260889069.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/16bvcp1260889069.tab") + } > > try(system("convert tmp/1s9z81260889069.ps tmp/1s9z81260889069.png",intern=TRUE)) character(0) > try(system("convert tmp/206ba1260889069.ps tmp/206ba1260889069.png",intern=TRUE)) character(0) > try(system("convert tmp/3wbit1260889069.ps tmp/3wbit1260889069.png",intern=TRUE)) character(0) > try(system("convert tmp/4i5gq1260889069.ps tmp/4i5gq1260889069.png",intern=TRUE)) character(0) > try(system("convert tmp/5cnru1260889069.ps tmp/5cnru1260889069.png",intern=TRUE)) character(0) > try(system("convert tmp/66xul1260889069.ps tmp/66xul1260889069.png",intern=TRUE)) character(0) > try(system("convert tmp/7ve3z1260889069.ps tmp/7ve3z1260889069.png",intern=TRUE)) character(0) > try(system("convert tmp/8we1y1260889069.ps tmp/8we1y1260889069.png",intern=TRUE)) character(0) > try(system("convert tmp/90b931260889069.ps tmp/90b931260889069.png",intern=TRUE)) character(0) > try(system("convert tmp/103d3i1260889069.ps tmp/103d3i1260889069.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 2.395 1.590 3.794