R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(8.7,0,8.2,0,8.3,0,8.5,0,8.6,0,8.5,0,8.2,0,8.1,0,7.9,0,8.6,0,8.7,0,8.7,0,8.5,0,8.4,0,8.5,0,8.7,0,8.7,0,8.6,0,8.5,0,8.3,0,8,0,8.2,0,8.1,0,8.1,0,8,0,7.9,0,7.9,0,8,0,8,0,7.9,0,8,0,7.7,0,7.2,0,7.5,0,7.3,0,7,0,7,0,7,0,7.2,0,7.3,0,7.1,0,6.8,0,6.4,0,6.1,0,6.5,0,7.7,0,7.9,0,7.5,0,6.9,1,6.6,1,6.9,1,7.7,1,8,1,8,1,7.7,1,7.3,1,7.4,1,8.1,1,8.3,1,8.2,1),dim=c(2,60),dimnames=list(c('Y','X'),1:60)) > y <- array(NA,dim=c(2,60),dimnames=list(c('Y','X'),1:60)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'Linear Trend' > par2 = 'Include Monthly Dummies' > par1 = '1' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > library(lmtest) Loading required package: zoo Attaching package: 'zoo' The following object(s) are masked from package:base : as.Date.numeric > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x Y X M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 t 1 8.7 0 1 0 0 0 0 0 0 0 0 0 0 1 2 8.2 0 0 1 0 0 0 0 0 0 0 0 0 2 3 8.3 0 0 0 1 0 0 0 0 0 0 0 0 3 4 8.5 0 0 0 0 1 0 0 0 0 0 0 0 4 5 8.6 0 0 0 0 0 1 0 0 0 0 0 0 5 6 8.5 0 0 0 0 0 0 1 0 0 0 0 0 6 7 8.2 0 0 0 0 0 0 0 1 0 0 0 0 7 8 8.1 0 0 0 0 0 0 0 0 1 0 0 0 8 9 7.9 0 0 0 0 0 0 0 0 0 1 0 0 9 10 8.6 0 0 0 0 0 0 0 0 0 0 1 0 10 11 8.7 0 0 0 0 0 0 0 0 0 0 0 1 11 12 8.7 0 0 0 0 0 0 0 0 0 0 0 0 12 13 8.5 0 1 0 0 0 0 0 0 0 0 0 0 13 14 8.4 0 0 1 0 0 0 0 0 0 0 0 0 14 15 8.5 0 0 0 1 0 0 0 0 0 0 0 0 15 16 8.7 0 0 0 0 1 0 0 0 0 0 0 0 16 17 8.7 0 0 0 0 0 1 0 0 0 0 0 0 17 18 8.6 0 0 0 0 0 0 1 0 0 0 0 0 18 19 8.5 0 0 0 0 0 0 0 1 0 0 0 0 19 20 8.3 0 0 0 0 0 0 0 0 1 0 0 0 20 21 8.0 0 0 0 0 0 0 0 0 0 1 0 0 21 22 8.2 0 0 0 0 0 0 0 0 0 0 1 0 22 23 8.1 0 0 0 0 0 0 0 0 0 0 0 1 23 24 8.1 0 0 0 0 0 0 0 0 0 0 0 0 24 25 8.0 0 1 0 0 0 0 0 0 0 0 0 0 25 26 7.9 0 0 1 0 0 0 0 0 0 0 0 0 26 27 7.9 0 0 0 1 0 0 0 0 0 0 0 0 27 28 8.0 0 0 0 0 1 0 0 0 0 0 0 0 28 29 8.0 0 0 0 0 0 1 0 0 0 0 0 0 29 30 7.9 0 0 0 0 0 0 1 0 0 0 0 0 30 31 8.0 0 0 0 0 0 0 0 1 0 0 0 0 31 32 7.7 0 0 0 0 0 0 0 0 1 0 0 0 32 33 7.2 0 0 0 0 0 0 0 0 0 1 0 0 33 34 7.5 0 0 0 0 0 0 0 0 0 0 1 0 34 35 7.3 0 0 0 0 0 0 0 0 0 0 0 1 35 36 7.0 0 0 0 0 0 0 0 0 0 0 0 0 36 37 7.0 0 1 0 0 0 0 0 0 0 0 0 0 37 38 7.0 0 0 1 0 0 0 0 0 0 0 0 0 38 39 7.2 0 0 0 1 0 0 0 0 0 0 0 0 39 40 7.3 0 0 0 0 1 0 0 0 0 0 0 0 40 41 7.1 0 0 0 0 0 1 0 0 0 0 0 0 41 42 6.8 0 0 0 0 0 0 1 0 0 0 0 0 42 43 6.4 0 0 0 0 0 0 0 1 0 0 0 0 43 44 6.1 0 0 0 0 0 0 0 0 1 0 0 0 44 45 6.5 0 0 0 0 0 0 0 0 0 1 0 0 45 46 7.7 0 0 0 0 0 0 0 0 0 0 1 0 46 47 7.9 0 0 0 0 0 0 0 0 0 0 0 1 47 48 7.5 0 0 0 0 0 0 0 0 0 0 0 0 48 49 6.9 1 1 0 0 0 0 0 0 0 0 0 0 49 50 6.6 1 0 1 0 0 0 0 0 0 0 0 0 50 51 6.9 1 0 0 1 0 0 0 0 0 0 0 0 51 52 7.7 1 0 0 0 1 0 0 0 0 0 0 0 52 53 8.0 1 0 0 0 0 1 0 0 0 0 0 0 53 54 8.0 1 0 0 0 0 0 1 0 0 0 0 0 54 55 7.7 1 0 0 0 0 0 0 1 0 0 0 0 55 56 7.3 1 0 0 0 0 0 0 0 1 0 0 0 56 57 7.4 1 0 0 0 0 0 0 0 0 1 0 0 57 58 8.1 1 0 0 0 0 0 0 0 0 0 1 0 58 59 8.3 1 0 0 0 0 0 0 0 0 0 0 1 59 60 8.2 1 0 0 0 0 0 0 0 0 0 0 0 60 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) X M1 M2 M3 M4 9.16083 0.90833 -0.52076 -0.68069 -0.50062 -0.18056 M5 M6 M7 M8 M9 M10 -0.10049 -0.18042 -0.34035 -0.56028 -0.62021 0.03986 M11 t 0.11993 -0.04007 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -0.78500 -0.24479 0.03875 0.32646 0.53500 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 9.160833 0.233750 39.191 < 2e-16 *** X 0.908333 0.192142 4.727 2.18e-05 *** M1 -0.520764 0.270860 -1.923 0.0607 . M2 -0.680694 0.270064 -2.520 0.0153 * M3 -0.500625 0.269341 -1.859 0.0695 . M4 -0.180556 0.268693 -0.672 0.5050 M5 -0.100486 0.268120 -0.375 0.7095 M6 -0.180417 0.267622 -0.674 0.5036 M7 -0.340347 0.267200 -1.274 0.2091 M8 -0.560278 0.266855 -2.100 0.0413 * M9 -0.620208 0.266586 -2.326 0.0245 * M10 0.039861 0.266393 0.150 0.8817 M11 0.119931 0.266278 0.450 0.6545 t -0.040069 0.004529 -8.848 1.72e-11 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.421 on 46 degrees of freedom Multiple R-squared: 0.6825, Adjusted R-squared: 0.5928 F-statistic: 7.608 on 13 and 46 DF, p-value: 1.038e-07 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 0.0367275995 0.0734551991 0.9632724 [2,] 0.0088739674 0.0177479348 0.9911260 [3,] 0.0035596276 0.0071192553 0.9964404 [4,] 0.0009352031 0.0018704062 0.9990648 [5,] 0.0002056395 0.0004112791 0.9997944 [6,] 0.0014310510 0.0028621021 0.9985689 [7,] 0.0069324524 0.0138649047 0.9930675 [8,] 0.0111216174 0.0222432348 0.9888784 [9,] 0.0159672051 0.0319344102 0.9840328 [10,] 0.0127719264 0.0255438528 0.9872281 [11,] 0.0101942480 0.0203884960 0.9898058 [12,] 0.0076572559 0.0153145117 0.9923427 [13,] 0.0057486635 0.0114973270 0.9942513 [14,] 0.0042040357 0.0084080714 0.9957960 [15,] 0.0049269350 0.0098538699 0.9950731 [16,] 0.0175612699 0.0351225398 0.9824387 [17,] 0.0338015802 0.0676031604 0.9661984 [18,] 0.0392056576 0.0784113152 0.9607943 [19,] 0.0497419797 0.0994839594 0.9502580 [20,] 0.0882935889 0.1765871777 0.9117064 [21,] 0.1328334379 0.2656668759 0.8671666 [22,] 0.2826468927 0.5652937854 0.7173531 [23,] 0.6294996458 0.7410007083 0.3705004 [24,] 0.6280646008 0.7438707983 0.3719354 [25,] 0.5190125613 0.9619748774 0.4809874 [26,] 0.4945515115 0.9891030230 0.5054485 [27,] 0.5981495113 0.8037009774 0.4018505 > postscript(file="/var/www/html/rcomp/tmp/1c7ci1260889287.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/2he931260889287.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/32ea81260889287.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/4b03b1260889287.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/55mvz1260889287.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 60 Frequency = 1 1 2 3 4 5 6 0.10000000 -0.20000000 -0.24000000 -0.32000000 -0.26000000 -0.24000000 7 8 9 10 11 12 -0.34000000 -0.18000000 -0.28000000 -0.20000000 -0.14000000 0.02000000 13 14 15 16 17 18 0.38083333 0.48083333 0.44083333 0.36083333 0.32083333 0.34083333 19 20 21 22 23 24 0.44083333 0.50083333 0.30083333 -0.11916667 -0.25916667 -0.09916667 25 26 27 28 29 30 0.36166667 0.46166667 0.32166667 0.14166667 0.10166667 0.12166667 31 32 33 34 35 36 0.42166667 0.38166667 -0.01833333 -0.33833333 -0.57833333 -0.71833333 37 38 39 40 41 42 -0.15750000 0.04250000 0.10250000 -0.07750000 -0.31750000 -0.49750000 43 44 45 46 47 48 -0.69750000 -0.73750000 -0.23750000 0.34250000 0.50250000 0.26250000 49 50 51 52 53 54 -0.68500000 -0.78500000 -0.62500000 -0.10500000 0.15500000 0.27500000 55 56 57 58 59 60 0.17500000 0.03500000 0.23500000 0.31500000 0.47500000 0.53500000 > postscript(file="/var/www/html/rcomp/tmp/6xub71260889287.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 60 Frequency = 1 lag(myerror, k = 1) myerror 0 0.10000000 NA 1 -0.20000000 0.10000000 2 -0.24000000 -0.20000000 3 -0.32000000 -0.24000000 4 -0.26000000 -0.32000000 5 -0.24000000 -0.26000000 6 -0.34000000 -0.24000000 7 -0.18000000 -0.34000000 8 -0.28000000 -0.18000000 9 -0.20000000 -0.28000000 10 -0.14000000 -0.20000000 11 0.02000000 -0.14000000 12 0.38083333 0.02000000 13 0.48083333 0.38083333 14 0.44083333 0.48083333 15 0.36083333 0.44083333 16 0.32083333 0.36083333 17 0.34083333 0.32083333 18 0.44083333 0.34083333 19 0.50083333 0.44083333 20 0.30083333 0.50083333 21 -0.11916667 0.30083333 22 -0.25916667 -0.11916667 23 -0.09916667 -0.25916667 24 0.36166667 -0.09916667 25 0.46166667 0.36166667 26 0.32166667 0.46166667 27 0.14166667 0.32166667 28 0.10166667 0.14166667 29 0.12166667 0.10166667 30 0.42166667 0.12166667 31 0.38166667 0.42166667 32 -0.01833333 0.38166667 33 -0.33833333 -0.01833333 34 -0.57833333 -0.33833333 35 -0.71833333 -0.57833333 36 -0.15750000 -0.71833333 37 0.04250000 -0.15750000 38 0.10250000 0.04250000 39 -0.07750000 0.10250000 40 -0.31750000 -0.07750000 41 -0.49750000 -0.31750000 42 -0.69750000 -0.49750000 43 -0.73750000 -0.69750000 44 -0.23750000 -0.73750000 45 0.34250000 -0.23750000 46 0.50250000 0.34250000 47 0.26250000 0.50250000 48 -0.68500000 0.26250000 49 -0.78500000 -0.68500000 50 -0.62500000 -0.78500000 51 -0.10500000 -0.62500000 52 0.15500000 -0.10500000 53 0.27500000 0.15500000 54 0.17500000 0.27500000 55 0.03500000 0.17500000 56 0.23500000 0.03500000 57 0.31500000 0.23500000 58 0.47500000 0.31500000 59 0.53500000 0.47500000 60 NA 0.53500000 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] -0.20000000 0.10000000 [2,] -0.24000000 -0.20000000 [3,] -0.32000000 -0.24000000 [4,] -0.26000000 -0.32000000 [5,] -0.24000000 -0.26000000 [6,] -0.34000000 -0.24000000 [7,] -0.18000000 -0.34000000 [8,] -0.28000000 -0.18000000 [9,] -0.20000000 -0.28000000 [10,] -0.14000000 -0.20000000 [11,] 0.02000000 -0.14000000 [12,] 0.38083333 0.02000000 [13,] 0.48083333 0.38083333 [14,] 0.44083333 0.48083333 [15,] 0.36083333 0.44083333 [16,] 0.32083333 0.36083333 [17,] 0.34083333 0.32083333 [18,] 0.44083333 0.34083333 [19,] 0.50083333 0.44083333 [20,] 0.30083333 0.50083333 [21,] -0.11916667 0.30083333 [22,] -0.25916667 -0.11916667 [23,] -0.09916667 -0.25916667 [24,] 0.36166667 -0.09916667 [25,] 0.46166667 0.36166667 [26,] 0.32166667 0.46166667 [27,] 0.14166667 0.32166667 [28,] 0.10166667 0.14166667 [29,] 0.12166667 0.10166667 [30,] 0.42166667 0.12166667 [31,] 0.38166667 0.42166667 [32,] -0.01833333 0.38166667 [33,] -0.33833333 -0.01833333 [34,] -0.57833333 -0.33833333 [35,] -0.71833333 -0.57833333 [36,] -0.15750000 -0.71833333 [37,] 0.04250000 -0.15750000 [38,] 0.10250000 0.04250000 [39,] -0.07750000 0.10250000 [40,] -0.31750000 -0.07750000 [41,] -0.49750000 -0.31750000 [42,] -0.69750000 -0.49750000 [43,] -0.73750000 -0.69750000 [44,] -0.23750000 -0.73750000 [45,] 0.34250000 -0.23750000 [46,] 0.50250000 0.34250000 [47,] 0.26250000 0.50250000 [48,] -0.68500000 0.26250000 [49,] -0.78500000 -0.68500000 [50,] -0.62500000 -0.78500000 [51,] -0.10500000 -0.62500000 [52,] 0.15500000 -0.10500000 [53,] 0.27500000 0.15500000 [54,] 0.17500000 0.27500000 [55,] 0.03500000 0.17500000 [56,] 0.23500000 0.03500000 [57,] 0.31500000 0.23500000 [58,] 0.47500000 0.31500000 [59,] 0.53500000 0.47500000 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 -0.20000000 0.10000000 2 -0.24000000 -0.20000000 3 -0.32000000 -0.24000000 4 -0.26000000 -0.32000000 5 -0.24000000 -0.26000000 6 -0.34000000 -0.24000000 7 -0.18000000 -0.34000000 8 -0.28000000 -0.18000000 9 -0.20000000 -0.28000000 10 -0.14000000 -0.20000000 11 0.02000000 -0.14000000 12 0.38083333 0.02000000 13 0.48083333 0.38083333 14 0.44083333 0.48083333 15 0.36083333 0.44083333 16 0.32083333 0.36083333 17 0.34083333 0.32083333 18 0.44083333 0.34083333 19 0.50083333 0.44083333 20 0.30083333 0.50083333 21 -0.11916667 0.30083333 22 -0.25916667 -0.11916667 23 -0.09916667 -0.25916667 24 0.36166667 -0.09916667 25 0.46166667 0.36166667 26 0.32166667 0.46166667 27 0.14166667 0.32166667 28 0.10166667 0.14166667 29 0.12166667 0.10166667 30 0.42166667 0.12166667 31 0.38166667 0.42166667 32 -0.01833333 0.38166667 33 -0.33833333 -0.01833333 34 -0.57833333 -0.33833333 35 -0.71833333 -0.57833333 36 -0.15750000 -0.71833333 37 0.04250000 -0.15750000 38 0.10250000 0.04250000 39 -0.07750000 0.10250000 40 -0.31750000 -0.07750000 41 -0.49750000 -0.31750000 42 -0.69750000 -0.49750000 43 -0.73750000 -0.69750000 44 -0.23750000 -0.73750000 45 0.34250000 -0.23750000 46 0.50250000 0.34250000 47 0.26250000 0.50250000 48 -0.68500000 0.26250000 49 -0.78500000 -0.68500000 50 -0.62500000 -0.78500000 51 -0.10500000 -0.62500000 52 0.15500000 -0.10500000 53 0.27500000 0.15500000 54 0.17500000 0.27500000 55 0.03500000 0.17500000 56 0.23500000 0.03500000 57 0.31500000 0.23500000 58 0.47500000 0.31500000 59 0.53500000 0.47500000 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/77rwv1260889287.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/89p5v1260889287.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/95y1t1260889287.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/www/html/rcomp/tmp/10aas71260889287.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/11grjg1260889287.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/12t52t1260889288.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/13ognf1260889288.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/145ca31260889288.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/15b7dz1260889288.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/16j2mn1260889288.tab") + } > > try(system("convert tmp/1c7ci1260889287.ps tmp/1c7ci1260889287.png",intern=TRUE)) character(0) > try(system("convert tmp/2he931260889287.ps tmp/2he931260889287.png",intern=TRUE)) character(0) > try(system("convert tmp/32ea81260889287.ps tmp/32ea81260889287.png",intern=TRUE)) character(0) > try(system("convert tmp/4b03b1260889287.ps tmp/4b03b1260889287.png",intern=TRUE)) character(0) > try(system("convert tmp/55mvz1260889287.ps tmp/55mvz1260889287.png",intern=TRUE)) character(0) > try(system("convert tmp/6xub71260889287.ps tmp/6xub71260889287.png",intern=TRUE)) character(0) > try(system("convert tmp/77rwv1260889287.ps tmp/77rwv1260889287.png",intern=TRUE)) character(0) > try(system("convert tmp/89p5v1260889287.ps tmp/89p5v1260889287.png",intern=TRUE)) character(0) > try(system("convert tmp/95y1t1260889287.ps tmp/95y1t1260889287.png",intern=TRUE)) character(0) > try(system("convert tmp/10aas71260889287.ps tmp/10aas71260889287.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 2.406 1.591 3.669