R version 2.9.0 (2009-04-17)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(106.2
+ ,431
+ ,436
+ ,460
+ ,467
+ ,81
+ ,484
+ ,431
+ ,448
+ ,460
+ ,94.7
+ ,510
+ ,484
+ ,443
+ ,448
+ ,101
+ ,513
+ ,510
+ ,436
+ ,443
+ ,109.4
+ ,503
+ ,513
+ ,431
+ ,436
+ ,102.3
+ ,471
+ ,503
+ ,484
+ ,431
+ ,90.7
+ ,471
+ ,471
+ ,510
+ ,484
+ ,96.2
+ ,476
+ ,471
+ ,513
+ ,510
+ ,96.1
+ ,475
+ ,476
+ ,503
+ ,513
+ ,106
+ ,470
+ ,475
+ ,471
+ ,503
+ ,103.1
+ ,461
+ ,470
+ ,471
+ ,471
+ ,102
+ ,455
+ ,461
+ ,476
+ ,471
+ ,104.7
+ ,456
+ ,455
+ ,475
+ ,476
+ ,86
+ ,517
+ ,456
+ ,470
+ ,475
+ ,92.1
+ ,525
+ ,517
+ ,461
+ ,470
+ ,106.9
+ ,523
+ ,525
+ ,455
+ ,461
+ ,112.6
+ ,519
+ ,523
+ ,456
+ ,455
+ ,101.7
+ ,509
+ ,519
+ ,517
+ ,456
+ ,92
+ ,512
+ ,509
+ ,525
+ ,517
+ ,97.4
+ ,519
+ ,512
+ ,523
+ ,525
+ ,97
+ ,517
+ ,519
+ ,519
+ ,523
+ ,105.4
+ ,510
+ ,517
+ ,509
+ ,519
+ ,102.7
+ ,509
+ ,510
+ ,512
+ ,509
+ ,98.1
+ ,501
+ ,509
+ ,519
+ ,512
+ ,104.5
+ ,507
+ ,501
+ ,517
+ ,519
+ ,87.4
+ ,569
+ ,507
+ ,510
+ ,517
+ ,89.9
+ ,580
+ ,569
+ ,509
+ ,510
+ ,109.8
+ ,578
+ ,580
+ ,501
+ ,509
+ ,111.7
+ ,565
+ ,578
+ ,507
+ ,501
+ ,98.6
+ ,547
+ ,565
+ ,569
+ ,507
+ ,96.9
+ ,555
+ ,547
+ ,580
+ ,569
+ ,95.1
+ ,562
+ ,555
+ ,578
+ ,580
+ ,97
+ ,561
+ ,562
+ ,565
+ ,578
+ ,112.7
+ ,555
+ ,561
+ ,547
+ ,565
+ ,102.9
+ ,544
+ ,555
+ ,555
+ ,547
+ ,97.4
+ ,537
+ ,544
+ ,562
+ ,555
+ ,111.4
+ ,543
+ ,537
+ ,561
+ ,562
+ ,87.4
+ ,594
+ ,543
+ ,555
+ ,561
+ ,96.8
+ ,611
+ ,594
+ ,544
+ ,555
+ ,114.1
+ ,613
+ ,611
+ ,537
+ ,544
+ ,110.3
+ ,611
+ ,613
+ ,543
+ ,537
+ ,103.9
+ ,594
+ ,611
+ ,594
+ ,543
+ ,101.6
+ ,595
+ ,594
+ ,611
+ ,594
+ ,94.6
+ ,591
+ ,595
+ ,613
+ ,611
+ ,95.9
+ ,589
+ ,591
+ ,611
+ ,613
+ ,104.7
+ ,584
+ ,589
+ ,594
+ ,611
+ ,102.8
+ ,573
+ ,584
+ ,595
+ ,594
+ ,98.1
+ ,567
+ ,573
+ ,591
+ ,595
+ ,113.9
+ ,569
+ ,567
+ ,589
+ ,591
+ ,80.9
+ ,621
+ ,569
+ ,584
+ ,589
+ ,95.7
+ ,629
+ ,621
+ ,573
+ ,584
+ ,113.2
+ ,628
+ ,629
+ ,567
+ ,573
+ ,105.9
+ ,612
+ ,628
+ ,569
+ ,567
+ ,108.8
+ ,595
+ ,612
+ ,621
+ ,569
+ ,102.3
+ ,597
+ ,595
+ ,629
+ ,621
+ ,99
+ ,593
+ ,597
+ ,628
+ ,629
+ ,100.7
+ ,590
+ ,593
+ ,612
+ ,628
+ ,115.5
+ ,580
+ ,590
+ ,595
+ ,612
+ ,100.7
+ ,574
+ ,580
+ ,597
+ ,595
+ ,109.9
+ ,573
+ ,574
+ ,593
+ ,597
+ ,114.6
+ ,573
+ ,573
+ ,590
+ ,593
+ ,85.4
+ ,620
+ ,573
+ ,580
+ ,590
+ ,100.5
+ ,626
+ ,620
+ ,574
+ ,580
+ ,114.8
+ ,620
+ ,626
+ ,573
+ ,574
+ ,116.5
+ ,588
+ ,620
+ ,573
+ ,573
+ ,112.9
+ ,566
+ ,588
+ ,620
+ ,573
+ ,102
+ ,557
+ ,566
+ ,626
+ ,620)
+ ,dim=c(5
+ ,67)
+ ,dimnames=list(c('X'
+ ,'Y'
+ ,'Y(t-1)'
+ ,'Y(t-4)'
+ ,'Y(t-5)')
+ ,1:67))
>  y <- array(NA,dim=c(5,67),dimnames=list(c('X','Y','Y(t-1)','Y(t-4)','Y(t-5)'),1:67))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'Linear Trend'
> par2 = 'Include Monthly Dummies'
> par1 = '2'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
	The following object(s) are masked from package:base :
	 as.Date.numeric 
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
     Y     X Y(t-1) Y(t-4) Y(t-5) M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11  t
1  431 106.2    436    460    467  1  0  0  0  0  0  0  0  0   0   0  1
2  484  81.0    431    448    460  0  1  0  0  0  0  0  0  0   0   0  2
3  510  94.7    484    443    448  0  0  1  0  0  0  0  0  0   0   0  3
4  513 101.0    510    436    443  0  0  0  1  0  0  0  0  0   0   0  4
5  503 109.4    513    431    436  0  0  0  0  1  0  0  0  0   0   0  5
6  471 102.3    503    484    431  0  0  0  0  0  1  0  0  0   0   0  6
7  471  90.7    471    510    484  0  0  0  0  0  0  1  0  0   0   0  7
8  476  96.2    471    513    510  0  0  0  0  0  0  0  1  0   0   0  8
9  475  96.1    476    503    513  0  0  0  0  0  0  0  0  1   0   0  9
10 470 106.0    475    471    503  0  0  0  0  0  0  0  0  0   1   0 10
11 461 103.1    470    471    471  0  0  0  0  0  0  0  0  0   0   1 11
12 455 102.0    461    476    471  0  0  0  0  0  0  0  0  0   0   0 12
13 456 104.7    455    475    476  1  0  0  0  0  0  0  0  0   0   0 13
14 517  86.0    456    470    475  0  1  0  0  0  0  0  0  0   0   0 14
15 525  92.1    517    461    470  0  0  1  0  0  0  0  0  0   0   0 15
16 523 106.9    525    455    461  0  0  0  1  0  0  0  0  0   0   0 16
17 519 112.6    523    456    455  0  0  0  0  1  0  0  0  0   0   0 17
18 509 101.7    519    517    456  0  0  0  0  0  1  0  0  0   0   0 18
19 512  92.0    509    525    517  0  0  0  0  0  0  1  0  0   0   0 19
20 519  97.4    512    523    525  0  0  0  0  0  0  0  1  0   0   0 20
21 517  97.0    519    519    523  0  0  0  0  0  0  0  0  1   0   0 21
22 510 105.4    517    509    519  0  0  0  0  0  0  0  0  0   1   0 22
23 509 102.7    510    512    509  0  0  0  0  0  0  0  0  0   0   1 23
24 501  98.1    509    519    512  0  0  0  0  0  0  0  0  0   0   0 24
25 507 104.5    501    517    519  1  0  0  0  0  0  0  0  0   0   0 25
26 569  87.4    507    510    517  0  1  0  0  0  0  0  0  0   0   0 26
27 580  89.9    569    509    510  0  0  1  0  0  0  0  0  0   0   0 27
28 578 109.8    580    501    509  0  0  0  1  0  0  0  0  0   0   0 28
29 565 111.7    578    507    501  0  0  0  0  1  0  0  0  0   0   0 29
30 547  98.6    565    569    507  0  0  0  0  0  1  0  0  0   0   0 30
31 555  96.9    547    580    569  0  0  0  0  0  0  1  0  0   0   0 31
32 562  95.1    555    578    580  0  0  0  0  0  0  0  1  0   0   0 32
33 561  97.0    562    565    578  0  0  0  0  0  0  0  0  1   0   0 33
34 555 112.7    561    547    565  0  0  0  0  0  0  0  0  0   1   0 34
35 544 102.9    555    555    547  0  0  0  0  0  0  0  0  0   0   1 35
36 537  97.4    544    562    555  0  0  0  0  0  0  0  0  0   0   0 36
37 543 111.4    537    561    562  1  0  0  0  0  0  0  0  0   0   0 37
38 594  87.4    543    555    561  0  1  0  0  0  0  0  0  0   0   0 38
39 611  96.8    594    544    555  0  0  1  0  0  0  0  0  0   0   0 39
40 613 114.1    611    537    544  0  0  0  1  0  0  0  0  0   0   0 40
41 611 110.3    613    543    537  0  0  0  0  1  0  0  0  0   0   0 41
42 594 103.9    611    594    543  0  0  0  0  0  1  0  0  0   0   0 42
43 595 101.6    594    611    594  0  0  0  0  0  0  1  0  0   0   0 43
44 591  94.6    595    613    611  0  0  0  0  0  0  0  1  0   0   0 44
45 589  95.9    591    611    613  0  0  0  0  0  0  0  0  1   0   0 45
46 584 104.7    589    594    611  0  0  0  0  0  0  0  0  0   1   0 46
47 573 102.8    584    595    594  0  0  0  0  0  0  0  0  0   0   1 47
48 567  98.1    573    591    595  0  0  0  0  0  0  0  0  0   0   0 48
49 569 113.9    567    589    591  1  0  0  0  0  0  0  0  0   0   0 49
50 621  80.9    569    584    589  0  1  0  0  0  0  0  0  0   0   0 50
51 629  95.7    621    573    584  0  0  1  0  0  0  0  0  0   0   0 51
52 628 113.2    629    567    573  0  0  0  1  0  0  0  0  0   0   0 52
53 612 105.9    628    569    567  0  0  0  0  1  0  0  0  0   0   0 53
54 595 108.8    612    621    569  0  0  0  0  0  1  0  0  0   0   0 54
55 597 102.3    595    629    621  0  0  0  0  0  0  1  0  0   0   0 55
56 593  99.0    597    628    629  0  0  0  0  0  0  0  1  0   0   0 56
57 590 100.7    593    612    628  0  0  0  0  0  0  0  0  1   0   0 57
58 580 115.5    590    595    612  0  0  0  0  0  0  0  0  0   1   0 58
59 574 100.7    580    597    595  0  0  0  0  0  0  0  0  0   0   1 59
60 573 109.9    574    593    597  0  0  0  0  0  0  0  0  0   0   0 60
61 573 114.6    573    590    593  1  0  0  0  0  0  0  0  0   0   0 61
62 620  85.4    573    580    590  0  1  0  0  0  0  0  0  0   0   0 62
63 626 100.5    620    574    580  0  0  1  0  0  0  0  0  0   0   0 63
64 620 114.8    626    573    574  0  0  0  1  0  0  0  0  0   0   0 64
65 588 116.5    620    573    573  0  0  0  0  1  0  0  0  0   0   0 65
66 566 112.9    588    620    573  0  0  0  0  0  1  0  0  0   0   0 66
67 557 102.0    566    626    620  0  0  0  0  0  0  1  0  0   0   0 67
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)            X     `Y(t-1)`     `Y(t-4)`     `Y(t-5)`           M1  
 -99.756682     0.382756     1.023540     0.104099     0.005104     4.041204  
         M2           M3           M4           M5           M6           M7  
  67.323331    21.702405     3.103729    -8.800759   -17.756279     4.463578  
         M8           M9          M10          M11            t  
   4.869827     1.888165    -4.805750    -2.918548    -0.470059  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
     Min       1Q   Median       3Q      Max 
-15.2473  -2.5617  -0.2233   2.5754   9.9149 
Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -99.756682  41.611218  -2.397  0.02029 *  
X             0.382756   0.240011   1.595  0.11707    
`Y(t-1)`      1.023540   0.074896  13.666  < 2e-16 ***
`Y(t-4)`      0.104099   0.174031   0.598  0.55243    
`Y(t-5)`      0.005104   0.159946   0.032  0.97467    
M1            4.041204   3.873252   1.043  0.30180    
M2           67.323331   5.603693  12.014 2.36e-16 ***
M3           21.702405   6.548458   3.314  0.00172 ** 
M4            3.103729   7.725819   0.402  0.68959    
M5           -8.800759   7.692180  -1.144  0.25802    
M6          -17.756279   9.010969  -1.971  0.05433 .  
M7            4.463578   4.085768   1.092  0.27986    
M8            4.869827   4.134005   1.178  0.24438    
M9            1.888165   4.263069   0.443  0.65974    
M10          -4.805750   5.161882  -0.931  0.35632    
M11          -2.918548   3.500481  -0.834  0.40838    
t            -0.470059   0.172063  -2.732  0.00868 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 5.381 on 50 degrees of freedom
Multiple R-squared: 0.9915,	Adjusted R-squared: 0.9888 
F-statistic: 363.9 on 16 and 50 DF,  p-value: < 2.2e-16 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
           [,1]       [,2]       [,3]
 [1,] 0.9910311 0.01793782 0.00896891
 [2,] 0.9804807 0.03903852 0.01951926
 [3,] 0.9799652 0.04006960 0.02003480
 [4,] 0.9631254 0.07374920 0.03687460
 [5,] 0.9472837 0.10543251 0.05271625
 [6,] 0.9137580 0.17248393 0.08624196
 [7,] 0.8902891 0.21942175 0.10971087
 [8,] 0.8726307 0.25473863 0.12736931
 [9,] 0.8655235 0.26895300 0.13447650
[10,] 0.8574054 0.28518930 0.14259465
[11,] 0.7978452 0.40430956 0.20215478
[12,] 0.7410274 0.51794523 0.25897262
[13,] 0.7158319 0.56833619 0.28416810
[14,] 0.6308183 0.73836346 0.36918173
[15,] 0.5428664 0.91426719 0.45713359
[16,] 0.5341598 0.93168042 0.46584021
[17,] 0.5321923 0.93561530 0.46780765
[18,] 0.4328330 0.86566608 0.56716696
[19,] 0.4626849 0.92536975 0.53731512
[20,] 0.3693018 0.73860366 0.63069817
[21,] 0.2869743 0.57394868 0.71302566
[22,] 0.8020598 0.39588040 0.19794020
[23,] 0.7217725 0.55645496 0.27822748
[24,] 0.6093160 0.78136793 0.39068397
[25,] 0.5428563 0.91428735 0.45714368
[26,] 0.4349576 0.86991516 0.56504242
[27,] 0.2987467 0.59749342 0.70125329
[28,] 0.3335033 0.66700666 0.66649667
> postscript(file="/var/www/html/rcomp/tmp/1xgyk1260894021.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/2gkbj1260894021.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/3y2o81260894021.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/40eum1260894021.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/53a9d1260894021.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 67 
Frequency = 1 
           1            2            3            4            5            6 
 -9.99598625  -3.75998290   9.42136337   3.22090672  -0.13409022 -15.24727185 
           7            8            9           10           11           12 
 -2.78092245  -0.26728067  -1.86930629   0.91113872  -3.11497164  -2.45106211 
          13           14           15           16           17           18 
  0.16417071   5.01169930  -4.70566455  -0.81950541   7.34694075   8.68357180 
          19           20           21           22           23           24 
  2.73774981   4.83142053  -0.30193148  -0.24461865   5.27520705  -3.13307022 
          25           26           27           28           29           30 
  5.20693624   5.53765692  -1.64790969  -2.61706320  -2.50643113   0.75450383 
          31           32           33           34           35           36 
  4.61755383   4.33405360   0.25725474  -1.62435924  -4.89016696  -1.74408380 
          37           38           39           40           41           42 
  2.55933797  -5.57812858   2.89011722   0.72183260   9.91490865   1.49752668 
          43           44           45           46           47           48 
 -3.00175661  -5.57716703  -0.33087782   2.29181760  -4.29771315   0.72298580 
          49           50           51           52           53           54 
 -0.52584636  -0.22334315  -3.85062416   0.01230256   0.02693712   2.29580543 
          55           56           57           58           59           60 
  1.33588479  -3.32102643   2.24486085  -1.33397843   7.02764470   6.60523034 
          61           62           63           64           65           66 
  2.59138769  -0.98790159  -2.10728220  -0.51847327 -14.64826516   2.01586411 
          67 
 -2.90850937 
> postscript(file="/var/www/html/rcomp/tmp/679qg1260894021.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 67 
Frequency = 1 
   lag(myerror, k = 1)      myerror
 0         -9.99598625           NA
 1         -3.75998290  -9.99598625
 2          9.42136337  -3.75998290
 3          3.22090672   9.42136337
 4         -0.13409022   3.22090672
 5        -15.24727185  -0.13409022
 6         -2.78092245 -15.24727185
 7         -0.26728067  -2.78092245
 8         -1.86930629  -0.26728067
 9          0.91113872  -1.86930629
10         -3.11497164   0.91113872
11         -2.45106211  -3.11497164
12          0.16417071  -2.45106211
13          5.01169930   0.16417071
14         -4.70566455   5.01169930
15         -0.81950541  -4.70566455
16          7.34694075  -0.81950541
17          8.68357180   7.34694075
18          2.73774981   8.68357180
19          4.83142053   2.73774981
20         -0.30193148   4.83142053
21         -0.24461865  -0.30193148
22          5.27520705  -0.24461865
23         -3.13307022   5.27520705
24          5.20693624  -3.13307022
25          5.53765692   5.20693624
26         -1.64790969   5.53765692
27         -2.61706320  -1.64790969
28         -2.50643113  -2.61706320
29          0.75450383  -2.50643113
30          4.61755383   0.75450383
31          4.33405360   4.61755383
32          0.25725474   4.33405360
33         -1.62435924   0.25725474
34         -4.89016696  -1.62435924
35         -1.74408380  -4.89016696
36          2.55933797  -1.74408380
37         -5.57812858   2.55933797
38          2.89011722  -5.57812858
39          0.72183260   2.89011722
40          9.91490865   0.72183260
41          1.49752668   9.91490865
42         -3.00175661   1.49752668
43         -5.57716703  -3.00175661
44         -0.33087782  -5.57716703
45          2.29181760  -0.33087782
46         -4.29771315   2.29181760
47          0.72298580  -4.29771315
48         -0.52584636   0.72298580
49         -0.22334315  -0.52584636
50         -3.85062416  -0.22334315
51          0.01230256  -3.85062416
52          0.02693712   0.01230256
53          2.29580543   0.02693712
54          1.33588479   2.29580543
55         -3.32102643   1.33588479
56          2.24486085  -3.32102643
57         -1.33397843   2.24486085
58          7.02764470  -1.33397843
59          6.60523034   7.02764470
60          2.59138769   6.60523034
61         -0.98790159   2.59138769
62         -2.10728220  -0.98790159
63         -0.51847327  -2.10728220
64        -14.64826516  -0.51847327
65          2.01586411 -14.64826516
66         -2.90850937   2.01586411
67                  NA  -2.90850937
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)      myerror
 [1,]         -3.75998290  -9.99598625
 [2,]          9.42136337  -3.75998290
 [3,]          3.22090672   9.42136337
 [4,]         -0.13409022   3.22090672
 [5,]        -15.24727185  -0.13409022
 [6,]         -2.78092245 -15.24727185
 [7,]         -0.26728067  -2.78092245
 [8,]         -1.86930629  -0.26728067
 [9,]          0.91113872  -1.86930629
[10,]         -3.11497164   0.91113872
[11,]         -2.45106211  -3.11497164
[12,]          0.16417071  -2.45106211
[13,]          5.01169930   0.16417071
[14,]         -4.70566455   5.01169930
[15,]         -0.81950541  -4.70566455
[16,]          7.34694075  -0.81950541
[17,]          8.68357180   7.34694075
[18,]          2.73774981   8.68357180
[19,]          4.83142053   2.73774981
[20,]         -0.30193148   4.83142053
[21,]         -0.24461865  -0.30193148
[22,]          5.27520705  -0.24461865
[23,]         -3.13307022   5.27520705
[24,]          5.20693624  -3.13307022
[25,]          5.53765692   5.20693624
[26,]         -1.64790969   5.53765692
[27,]         -2.61706320  -1.64790969
[28,]         -2.50643113  -2.61706320
[29,]          0.75450383  -2.50643113
[30,]          4.61755383   0.75450383
[31,]          4.33405360   4.61755383
[32,]          0.25725474   4.33405360
[33,]         -1.62435924   0.25725474
[34,]         -4.89016696  -1.62435924
[35,]         -1.74408380  -4.89016696
[36,]          2.55933797  -1.74408380
[37,]         -5.57812858   2.55933797
[38,]          2.89011722  -5.57812858
[39,]          0.72183260   2.89011722
[40,]          9.91490865   0.72183260
[41,]          1.49752668   9.91490865
[42,]         -3.00175661   1.49752668
[43,]         -5.57716703  -3.00175661
[44,]         -0.33087782  -5.57716703
[45,]          2.29181760  -0.33087782
[46,]         -4.29771315   2.29181760
[47,]          0.72298580  -4.29771315
[48,]         -0.52584636   0.72298580
[49,]         -0.22334315  -0.52584636
[50,]         -3.85062416  -0.22334315
[51,]          0.01230256  -3.85062416
[52,]          0.02693712   0.01230256
[53,]          2.29580543   0.02693712
[54,]          1.33588479   2.29580543
[55,]         -3.32102643   1.33588479
[56,]          2.24486085  -3.32102643
[57,]         -1.33397843   2.24486085
[58,]          7.02764470  -1.33397843
[59,]          6.60523034   7.02764470
[60,]          2.59138769   6.60523034
[61,]         -0.98790159   2.59138769
[62,]         -2.10728220  -0.98790159
[63,]         -0.51847327  -2.10728220
[64,]        -14.64826516  -0.51847327
[65,]          2.01586411 -14.64826516
[66,]         -2.90850937   2.01586411
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)      myerror
1          -3.75998290  -9.99598625
2           9.42136337  -3.75998290
3           3.22090672   9.42136337
4          -0.13409022   3.22090672
5         -15.24727185  -0.13409022
6          -2.78092245 -15.24727185
7          -0.26728067  -2.78092245
8          -1.86930629  -0.26728067
9           0.91113872  -1.86930629
10         -3.11497164   0.91113872
11         -2.45106211  -3.11497164
12          0.16417071  -2.45106211
13          5.01169930   0.16417071
14         -4.70566455   5.01169930
15         -0.81950541  -4.70566455
16          7.34694075  -0.81950541
17          8.68357180   7.34694075
18          2.73774981   8.68357180
19          4.83142053   2.73774981
20         -0.30193148   4.83142053
21         -0.24461865  -0.30193148
22          5.27520705  -0.24461865
23         -3.13307022   5.27520705
24          5.20693624  -3.13307022
25          5.53765692   5.20693624
26         -1.64790969   5.53765692
27         -2.61706320  -1.64790969
28         -2.50643113  -2.61706320
29          0.75450383  -2.50643113
30          4.61755383   0.75450383
31          4.33405360   4.61755383
32          0.25725474   4.33405360
33         -1.62435924   0.25725474
34         -4.89016696  -1.62435924
35         -1.74408380  -4.89016696
36          2.55933797  -1.74408380
37         -5.57812858   2.55933797
38          2.89011722  -5.57812858
39          0.72183260   2.89011722
40          9.91490865   0.72183260
41          1.49752668   9.91490865
42         -3.00175661   1.49752668
43         -5.57716703  -3.00175661
44         -0.33087782  -5.57716703
45          2.29181760  -0.33087782
46         -4.29771315   2.29181760
47          0.72298580  -4.29771315
48         -0.52584636   0.72298580
49         -0.22334315  -0.52584636
50         -3.85062416  -0.22334315
51          0.01230256  -3.85062416
52          0.02693712   0.01230256
53          2.29580543   0.02693712
54          1.33588479   2.29580543
55         -3.32102643   1.33588479
56          2.24486085  -3.32102643
57         -1.33397843   2.24486085
58          7.02764470  -1.33397843
59          6.60523034   7.02764470
60          2.59138769   6.60523034
61         -0.98790159   2.59138769
62         -2.10728220  -0.98790159
63         -0.51847327  -2.10728220
64        -14.64826516  -0.51847327
65          2.01586411 -14.64826516
66         -2.90850937   2.01586411
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/7r4js1260894021.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/8z8ob1260894021.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/9297g1260894021.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/html/rcomp/tmp/10twcr1260894021.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/115qka1260894021.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/12ff731260894021.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/13pbrh1260894021.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/14kzz81260894021.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/15r22h1260894021.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/160eij1260894021.tab") 
+ }
> 
> try(system("convert tmp/1xgyk1260894021.ps tmp/1xgyk1260894021.png",intern=TRUE))
character(0)
> try(system("convert tmp/2gkbj1260894021.ps tmp/2gkbj1260894021.png",intern=TRUE))
character(0)
> try(system("convert tmp/3y2o81260894021.ps tmp/3y2o81260894021.png",intern=TRUE))
character(0)
> try(system("convert tmp/40eum1260894021.ps tmp/40eum1260894021.png",intern=TRUE))
character(0)
> try(system("convert tmp/53a9d1260894021.ps tmp/53a9d1260894021.png",intern=TRUE))
character(0)
> try(system("convert tmp/679qg1260894021.ps tmp/679qg1260894021.png",intern=TRUE))
character(0)
> try(system("convert tmp/7r4js1260894021.ps tmp/7r4js1260894021.png",intern=TRUE))
character(0)
> try(system("convert tmp/8z8ob1260894021.ps tmp/8z8ob1260894021.png",intern=TRUE))
character(0)
> try(system("convert tmp/9297g1260894021.ps tmp/9297g1260894021.png",intern=TRUE))
character(0)
> try(system("convert tmp/10twcr1260894021.ps tmp/10twcr1260894021.png",intern=TRUE))
character(0)
> 
> 
> proc.time()
   user  system elapsed 
  2.532   1.588   3.328