R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(7.1,6.9,6.8,7.5,7.6,7.8,8.0,8.1,8.2,8.3,8.2,8.0,7.9,7.6,7.6,8.3,8.4,8.4,8.4,8.4,8.6,8.9,8.8,8.3,7.5,7.2,7.4,8.8,9.3,9.3,8.7,8.2,8.3,8.5,8.6,8.5,8.2,8.1,7.9,8.6,8.7,8.7,8.5,8.4,8.5,8.7,8.7,8.6,8.5,8.3,8.0,8.2,8.1,8.1,8.0,7.9,7.9,8.0,8.0,7.9,8.0,7.7,7.2,7.5,7.3,7.0,7.0,7.0,7.2,7.3,7.1,6.8,6.4,6.1,6.5,7.7,7.9,7.5,6.9,6.6,6.9,7.7,8.0,8.0,7.7,7.3,7.4,8.1,8.3,8.2) > par10 = 'FALSE' > par9 = '1' > par8 = '1' > par7 = '0' > par6 = '3' > par5 = '12' > par4 = '1' > par3 = '1' > par2 = '1' > par1 = '12' > par1 <- as.numeric(par1) #cut off periods > par1 <- 28 > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par6 <- 3 > par7 <- as.numeric(par7) #q > par7 <- 3 > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 ma2 ma3 sar1 sma1 0.8433 -0.4999 -0.1498 -0.2816 0.2591 -0.3008 0.5573 -0.9999 s.e. 0.5164 0.6048 0.4465 0.5021 0.3238 0.1912 0.2467 0.4278 sigma^2 estimated as 0.02143: log likelihood = 19.01, aic = -20.02 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 63 End = 90 Frequency = 1 [1] 7.389074 7.602202 7.559209 7.667821 7.690357 7.657536 7.674091 7.732435 [9] 7.663564 7.517270 7.529324 7.290213 7.068446 7.441981 7.436270 7.519258 [17] 7.511743 7.475681 7.529224 7.622831 7.557107 7.386638 7.321532 7.085583 [25] 6.901384 7.373691 7.407335 7.488833 $se Time Series: Start = 63 End = 90 Frequency = 1 [1] 0.1563839 0.2903517 0.4038245 0.4488002 0.4578727 0.4594678 0.4641119 [8] 0.4806128 0.5102106 0.5406388 0.5616367 0.5734846 0.6107683 0.6709559 [15] 0.7434593 0.7929576 0.8188923 0.8343974 0.8511653 0.8759168 0.9088263 [22] 0.9436036 0.9733621 0.9957760 1.0341772 1.0844027 1.1409112 1.1850222 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 63 End = 90 Frequency = 1 [1] 7.082561 7.033113 6.767713 6.788172 6.792926 6.756979 6.764432 6.790434 [9] 6.663552 6.457618 6.428517 6.166183 5.871340 6.126907 5.979090 5.965061 [17] 5.906715 5.840262 5.860940 5.906034 5.775808 5.537175 5.413743 5.133862 [25] 4.874397 5.248262 5.171149 5.166189 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 63 End = 90 Frequency = 1 [1] 7.695586 8.171292 8.350705 8.547469 8.587787 8.558093 8.583750 8.674436 [9] 8.663577 8.576922 8.630132 8.414243 8.265551 8.757054 8.893450 9.073454 [17] 9.116772 9.111100 9.197508 9.339628 9.338407 9.236101 9.229322 9.037304 [25] 8.928372 9.499120 9.643521 9.811476 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 7.100000 6.900000 6.800000 7.500000 7.600000 7.800000 8.000000 8.100000 [9] 8.200000 8.300000 8.200000 8.000000 7.900000 7.600000 7.600000 8.300000 [17] 8.400000 8.400000 8.400000 8.400000 8.600000 8.900000 8.800000 8.300000 [25] 7.500000 7.200000 7.400000 8.800000 9.300000 9.300000 8.700000 8.200000 [33] 8.300000 8.500000 8.600000 8.500000 8.200000 8.100000 7.900000 8.600000 [41] 8.700000 8.700000 8.500000 8.400000 8.500000 8.700000 8.700000 8.600000 [49] 8.500000 8.300000 8.000000 8.200000 8.100000 8.100000 8.000000 7.900000 [57] 7.900000 8.000000 8.000000 7.900000 8.000000 7.700000 7.389074 7.602202 [65] 7.559209 7.667821 7.690357 7.657536 7.674091 7.732435 7.663564 7.517270 [73] 7.529324 7.290213 7.068446 7.441981 7.436270 7.519258 7.511743 7.475681 [81] 7.529224 7.622831 7.557107 7.386638 7.321532 7.085583 6.901384 7.373691 [89] 7.407335 7.488833 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 63 End = 90 Frequency = 1 [1] 0.02116421 0.03819311 0.05342154 0.05853035 0.05953856 0.06000204 [7] 0.06047777 0.06215542 0.06657615 0.07191956 0.07459324 0.07866500 [13] 0.08640773 0.09015824 0.09997745 0.10545690 0.10901495 0.11161490 [19] 0.11304821 0.11490701 0.12026113 0.12774467 0.13294513 0.14053551 [25] 0.14985069 0.14706375 0.15402452 0.15823857 > postscript(file="/var/www/html/rcomp/tmp/1xwd91261127277.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2jtdr1261127277.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3qz121261127277.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/417nn1261127277.tab") > > try(system("convert tmp/1xwd91261127277.ps tmp/1xwd91261127277.png",intern=TRUE)) character(0) > try(system("convert tmp/2jtdr1261127277.ps tmp/2jtdr1261127277.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 1.777 0.322 2.019