R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(8.9,8.8,8.3,7.5,7.2,7.4,8.8,9.3,9.3,8.7,8.2,8.3,8.5,8.6,8.5,8.2,8.1,7.9,8.6,8.7,8.7,8.5,8.4,8.5,8.7,8.7,8.6,8.5,8.3,8,8.2,8.1,8.1,8,7.9,7.9,8,8,7.9,8,7.7,7.2,7.5,7.3,7,7,7,7.2,7.3,7.1,6.8,6.4,6.1,6.5,7.7,7.9,7.5,6.9,6.6,6.9) > par10 = 'FALSE' > par9 = '1' > par8 = '1' > par7 = '1' > par6 = '2' > par5 = '12' > par4 = '1' > par3 = '1' > par2 = '1' > par1 = '24' > par1 <- as.numeric(par1) #cut off periods > par1 <- 28 > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par6 <- 3 > par7 <- as.numeric(par7) #q > par7 <- 3 > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 ma2 ma3 sar1 sma1 1.0277 -0.5837 -0.1267 -0.6157 0.6153 -0.9992 -0.2019 0.9925 s.e. 0.2858 0.3819 0.3026 0.2603 0.3264 0.3619 0.5555 1.1384 sigma^2 estimated as 0.008636: log likelihood = 9.84, aic = -1.68 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 33 End = 60 Frequency = 1 [1] 8.108902 8.275172 8.608071 8.870756 9.088754 8.867307 8.530407 8.328135 [9] 8.042018 7.885997 8.117284 8.075660 8.073120 8.246141 8.605113 8.905680 [17] 9.116267 8.879983 8.522964 8.306751 8.049679 7.905374 8.169829 8.131714 [25] 8.118986 8.263869 8.595421 8.882784 $se Time Series: Start = 33 End = 60 Frequency = 1 [1] 0.1163588 0.1997230 0.2860541 0.3066383 0.3068955 0.3216746 0.3345111 [8] 0.3354359 0.3382182 0.3476307 0.3541293 0.3550140 0.3911684 0.4502581 [15] 0.5410388 0.5686498 0.5679810 0.5794904 0.5921026 0.5930418 0.5965094 [22] 0.6089108 0.6187582 0.6207822 0.6416307 0.6730443 0.7281461 0.7487193 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 33 End = 60 Frequency = 1 [1] 7.880839 7.883715 8.047404 8.269745 8.487239 8.236825 7.874765 7.670681 [9] 7.379110 7.204641 7.423190 7.379833 7.306430 7.363635 7.544677 7.791126 [17] 8.003024 7.744182 7.362443 7.144389 6.880521 6.711909 6.957063 6.914981 [25] 6.861389 6.944702 7.168255 7.415294 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 33 End = 60 Frequency = 1 [1] 8.336966 8.666629 9.168737 9.471767 9.690269 9.497789 9.186048 [8] 8.985589 8.704926 8.567353 8.811377 8.771488 8.839810 9.128646 [15] 9.665549 10.020234 10.229509 10.015784 9.683485 9.469113 9.218838 [22] 9.098839 9.382595 9.348448 9.376582 9.583036 10.022587 10.350273 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 8.900000 8.800000 8.300000 7.500000 7.200000 7.400000 8.800000 9.300000 [9] 9.300000 8.700000 8.200000 8.300000 8.500000 8.600000 8.500000 8.200000 [17] 8.100000 7.900000 8.600000 8.700000 8.700000 8.500000 8.400000 8.500000 [25] 8.700000 8.700000 8.600000 8.500000 8.300000 8.000000 8.200000 8.100000 [33] 8.108902 8.275172 8.608071 8.870756 9.088754 8.867307 8.530407 8.328135 [41] 8.042018 7.885997 8.117284 8.075660 8.073120 8.246141 8.605113 8.905680 [49] 9.116267 8.879983 8.522964 8.306751 8.049679 7.905374 8.169829 8.131714 [57] 8.118986 8.263869 8.595421 8.882784 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 33 End = 60 Frequency = 1 [1] 0.01434952 0.02413521 0.03323092 0.03456732 0.03376651 0.03627647 [7] 0.03921397 0.04027744 0.04205639 0.04408203 0.04362658 0.04396099 [13] 0.04845319 0.05460228 0.06287411 0.06385249 0.06230412 0.06525806 [19] 0.06947145 0.07139275 0.07410350 0.07702493 0.07573699 0.07634087 [25] 0.07902843 0.08144421 0.08471326 0.08428881 > postscript(file="/var/www/html/rcomp/tmp/14tek1261165962.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2qbzo1261165962.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3g69z1261165962.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4uura1261165962.tab") > > try(system("convert tmp/14tek1261165962.ps tmp/14tek1261165962.png",intern=TRUE)) character(0) > try(system("convert tmp/2qbzo1261165962.ps tmp/2qbzo1261165962.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 1.553 0.336 1.690