R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(2.64,2.75,2.7,2.87,3.03,3.14,3.02,2.86,3.07,2.93,2.83,2.72,2.73,2.72,2.77,2.61,2.47,2.3,2.38,2.43,2.39,2.6,2.84,2.87,2.92,3.08,3.33,3.48,3.57,3.66,3.77,3.75,3.75,3.81,3.82,3.89,4.05,4.1,4.07,4.26,4.4,4.61,4.63,4.48,4.46,4.45,4.32,4.52,4.21,3.97,4.12,4.5,4.73,5.26,5.2,4.94,4.95,4.52,3.85,3.41,2.95,2.68,2.53,2.44,2.16,2.2,2.1,2.29,2.03,2.05,1.94) > par10 = 'FALSE' > par9 = '0' > par8 = '0' > par7 = '1' > par6 = '1' > par5 = '12' > par4 = '0' > par3 = '2' > par2 = '1' > par1 = '15' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ma1 0.2992 -1.0000 s.e. 0.1367 0.0577 sigma^2 estimated as 0.02381: log likelihood = 22.6, aic = -39.19 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 57 End = 71 Frequency = 1 [1] 4.890248 4.903412 4.935403 4.973029 5.012342 5.052158 5.092126 5.132139 [9] 5.172165 5.212195 5.252227 5.292259 5.332291 5.372323 5.412355 $se Time Series: Start = 57 End = 71 Frequency = 1 [1] 0.1556656 0.2573786 0.3401517 0.4107457 0.4733029 0.5303074 0.5832874 [8] 0.6332252 0.6807825 0.7264247 0.7704916 0.8132390 0.8548650 0.8955258 [15] 0.9353474 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 57 End = 71 Frequency = 1 [1] 4.585143 4.398949 4.268706 4.167968 4.084668 4.012756 3.948883 3.891017 [9] 3.837831 3.788403 3.742063 3.698310 3.656755 3.617092 3.579074 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 57 End = 71 Frequency = 1 [1] 5.195352 5.407874 5.602101 5.778091 5.940015 6.091561 6.235369 6.373260 [9] 6.506499 6.635988 6.762390 6.886207 7.007826 7.127553 7.245636 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 2.640000 2.750000 2.700000 2.870000 3.030000 3.140000 3.020000 2.860000 [9] 3.070000 2.930000 2.830000 2.720000 2.730000 2.720000 2.770000 2.610000 [17] 2.470000 2.300000 2.380000 2.430000 2.390000 2.600000 2.840000 2.870000 [25] 2.920000 3.080000 3.330000 3.480000 3.570000 3.660000 3.770000 3.750000 [33] 3.750000 3.810000 3.820000 3.890000 4.050000 4.100000 4.070000 4.260000 [41] 4.400000 4.610000 4.630000 4.480000 4.460000 4.450000 4.320000 4.520000 [49] 4.210000 3.970000 4.120000 4.500000 4.730000 5.260000 5.200000 4.940000 [57] 4.890248 4.903412 4.935403 4.973029 5.012342 5.052158 5.092126 5.132139 [65] 5.172165 5.212195 5.252227 5.292259 5.332291 5.372323 5.412355 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 57 End = 71 Frequency = 1 [1] 0.03183185 0.05248971 0.06892075 0.08259466 0.09442751 0.10496651 [7] 0.11454693 0.12338427 0.13162428 0.13937020 0.14669807 0.15366577 [13] 0.16031852 0.16669247 0.17281708 > postscript(file="/var/www/html/rcomp/tmp/1tzdo1261224974.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/28lcp1261224974.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3sf2y1261224974.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4499y1261224974.tab") > > try(system("convert tmp/1tzdo1261224974.ps tmp/1tzdo1261224974.png",intern=TRUE)) character(0) > try(system("convert tmp/28lcp1261224974.ps tmp/28lcp1261224974.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.602 0.306 0.774