R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(921365,987921,1132614,1332224,1418133,1411549,1695920,1636173,1539653,1395314,1127575,1036076,989236,1008380,1207763,1368839,1469798,1498721,1761769,1653214,1599104,1421179,1163995,1037735,1015407,1039210,1258049,1469445,1552346,1549144,1785895,1662335,1629440,1467430,1202209,1076982,1039367,1063449,1335135,1491602,1591972,1641248,1898849,1798580,1762444,1622044,1368955,1262973,1195650,1269530,1479279,1607819,1712466,1721766,1949843,1821326,1757802,1590367,1260647,1149235) > par10 = 'FALSE' > par9 = '1' > par8 = '0' > par7 = '0' > par6 = '0' > par5 = '12' > par4 = '1' > par3 = '1' > par2 = '1' > par1 = '24' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: sma1 -0.0905 s.e. 0.3015 sigma^2 estimated as 9.43e+08: log likelihood = -270.33, aic = 544.66 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 37 End = 60 Frequency = 1 [1] 1052453 1076220 1292854 1500008 1584421 1583839 1823143 1701338 1666178 [10] 1503000 1238421 1113383 1088854 1112621 1329255 1536409 1620822 1620240 [19] 1859544 1737739 1702579 1539401 1274822 1149784 $se Time Series: Start = 37 End = 60 Frequency = 1 [1] 30710.55 43430.56 53191.06 61419.58 68669.06 75223.10 81250.17 [8] 86860.04 92128.94 97112.40 101852.31 106381.24 121473.16 134886.26 [15] 147081.19 158339.67 168849.12 178741.71 188114.79 197042.50 205582.88 [22] 213782.36 221678.76 229303.39 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 37 End = 60 Frequency = 1 [1] 992260.8 991096.1 1188599.2 1379625.9 1449830.1 1436401.3 1663892.6 [8] 1531092.0 1485605.2 1312660.1 1038790.5 904875.8 850767.1 848244.0 [15] 1040975.5 1226063.6 1289878.2 1269905.8 1490839.0 1351535.4 1299636.5 [22] 1120388.0 840331.7 700349.4 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 37 End = 60 Frequency = 1 [1] 1112646 1161344 1397108 1620391 1719013 1731276 1982393 1871583 1846751 [10] 1693341 1438052 1321890 1326942 1376998 1617534 1846755 1951767 1970573 [19] 2228249 2123942 2105521 1958415 1709312 1599219 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 921365 987921 1132614 1332224 1418133 1411549 1695920 1636173 1539653 [10] 1395314 1127575 1036076 989236 1008380 1207763 1368839 1469798 1498721 [19] 1761769 1653214 1599104 1421179 1163995 1037735 1015407 1039210 1258049 [28] 1469445 1552346 1549144 1785895 1662335 1629440 1467430 1202209 1076982 [37] 1052453 1076220 1292854 1500008 1584421 1583839 1823143 1701338 1666178 [46] 1503000 1238421 1113383 1088854 1112621 1329255 1536409 1620822 1620240 [55] 1859544 1737739 1702579 1539401 1274822 1149784 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 37 End = 60 Frequency = 1 [1] 0.02917996 0.04035472 0.04114237 0.04094616 0.04334015 0.04749417 [7] 0.04456599 0.05105397 0.05529358 0.06461236 0.08224368 0.09554775 [13] 0.11156051 0.12123289 0.11064937 0.10305826 0.10417496 0.11031808 [19] 0.10116178 0.11339018 0.12074793 0.13887369 0.17388996 0.19943170 > postscript(file="/var/www/html/rcomp/tmp/1ftkf1261313261.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2acl61261313261.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/308b91261313262.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4m1m81261313262.tab") > > try(system("convert tmp/1ftkf1261313261.ps tmp/1ftkf1261313261.png",intern=TRUE)) character(0) > try(system("convert tmp/2acl61261313261.ps tmp/2acl61261313261.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.654 0.312 1.128