R version 2.9.0 (2009-04-17)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(-1.2,23.6,-2.4,25.7,0.8,32.5,-0.1,33.5,-1.5,34.5,-4.4,27.9,-4.2,45.3,3.5,40.8,10,58.5,8.6,32.5,9.5,35.5,9.9,46.7,10.4,53.2,16,36.1,12.7,54,10.2,58.1,8.9,41.8,12.6,43.1,13.6,76,14.8,42.8,9.5,41,13.7,61.4,17,34.2,14.7,53.8,17.4,80.7,9,79.5,9.1,96.5,12.2,108.3,15.9,100.1,12.9,108.5,10.9,127.4,10.6,86.5,13.2,71.4,9.6,88.2,6.4,135.6,5.8,70.5,-1,87.5,-0.2,73.3,2.7,92.2,3.6,61.1,-0.9,45.7,0.3,30.5,-1.1,34.8,-2.5,29.2,-3.4,56.7,-3.5,67.1,-3.9,41.8,-4.6,46.8,-0.1,50.1,4.3,81.9,10.2,115.8,8.7,102.5,13.3,106.6,15,101.4,20.7,136.1,20.7,143.4,26.4,127.5,31.2,113.8,31.4,75.3,26.6,98.5,26.6,113.7,19.2,103.7,6.5,73.9,3.1,52.5,-0.2,63.9,-4,44.9,-12.6,31.3,-13,24.9,-17.6,22.8,-21.7,24.8,-23.2,22.8,-16.8,20.9,-19.8,21.5),dim=c(2,73),dimnames=list(c('werkl','afzetp'),1:73))
>  y <- array(NA,dim=c(2,73),dimnames=list(c('werkl','afzetp'),1:73))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'Linear Trend'
> par2 = 'Include Monthly Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
	The following object(s) are masked from package:base :
	 as.Date.numeric 
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
   werkl afzetp M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11  t
1   -1.2   23.6  1  0  0  0  0  0  0  0  0   0   0  1
2   -2.4   25.7  0  1  0  0  0  0  0  0  0   0   0  2
3    0.8   32.5  0  0  1  0  0  0  0  0  0   0   0  3
4   -0.1   33.5  0  0  0  1  0  0  0  0  0   0   0  4
5   -1.5   34.5  0  0  0  0  1  0  0  0  0   0   0  5
6   -4.4   27.9  0  0  0  0  0  1  0  0  0   0   0  6
7   -4.2   45.3  0  0  0  0  0  0  1  0  0   0   0  7
8    3.5   40.8  0  0  0  0  0  0  0  1  0   0   0  8
9   10.0   58.5  0  0  0  0  0  0  0  0  1   0   0  9
10   8.6   32.5  0  0  0  0  0  0  0  0  0   1   0 10
11   9.5   35.5  0  0  0  0  0  0  0  0  0   0   1 11
12   9.9   46.7  0  0  0  0  0  0  0  0  0   0   0 12
13  10.4   53.2  1  0  0  0  0  0  0  0  0   0   0 13
14  16.0   36.1  0  1  0  0  0  0  0  0  0   0   0 14
15  12.7   54.0  0  0  1  0  0  0  0  0  0   0   0 15
16  10.2   58.1  0  0  0  1  0  0  0  0  0   0   0 16
17   8.9   41.8  0  0  0  0  1  0  0  0  0   0   0 17
18  12.6   43.1  0  0  0  0  0  1  0  0  0   0   0 18
19  13.6   76.0  0  0  0  0  0  0  1  0  0   0   0 19
20  14.8   42.8  0  0  0  0  0  0  0  1  0   0   0 20
21   9.5   41.0  0  0  0  0  0  0  0  0  1   0   0 21
22  13.7   61.4  0  0  0  0  0  0  0  0  0   1   0 22
23  17.0   34.2  0  0  0  0  0  0  0  0  0   0   1 23
24  14.7   53.8  0  0  0  0  0  0  0  0  0   0   0 24
25  17.4   80.7  1  0  0  0  0  0  0  0  0   0   0 25
26   9.0   79.5  0  1  0  0  0  0  0  0  0   0   0 26
27   9.1   96.5  0  0  1  0  0  0  0  0  0   0   0 27
28  12.2  108.3  0  0  0  1  0  0  0  0  0   0   0 28
29  15.9  100.1  0  0  0  0  1  0  0  0  0   0   0 29
30  12.9  108.5  0  0  0  0  0  1  0  0  0   0   0 30
31  10.9  127.4  0  0  0  0  0  0  1  0  0   0   0 31
32  10.6   86.5  0  0  0  0  0  0  0  1  0   0   0 32
33  13.2   71.4  0  0  0  0  0  0  0  0  1   0   0 33
34   9.6   88.2  0  0  0  0  0  0  0  0  0   1   0 34
35   6.4  135.6  0  0  0  0  0  0  0  0  0   0   1 35
36   5.8   70.5  0  0  0  0  0  0  0  0  0   0   0 36
37  -1.0   87.5  1  0  0  0  0  0  0  0  0   0   0 37
38  -0.2   73.3  0  1  0  0  0  0  0  0  0   0   0 38
39   2.7   92.2  0  0  1  0  0  0  0  0  0   0   0 39
40   3.6   61.1  0  0  0  1  0  0  0  0  0   0   0 40
41  -0.9   45.7  0  0  0  0  1  0  0  0  0   0   0 41
42   0.3   30.5  0  0  0  0  0  1  0  0  0   0   0 42
43  -1.1   34.8  0  0  0  0  0  0  1  0  0   0   0 43
44  -2.5   29.2  0  0  0  0  0  0  0  1  0   0   0 44
45  -3.4   56.7  0  0  0  0  0  0  0  0  1   0   0 45
46  -3.5   67.1  0  0  0  0  0  0  0  0  0   1   0 46
47  -3.9   41.8  0  0  0  0  0  0  0  0  0   0   1 47
48  -4.6   46.8  0  0  0  0  0  0  0  0  0   0   0 48
49  -0.1   50.1  1  0  0  0  0  0  0  0  0   0   0 49
50   4.3   81.9  0  1  0  0  0  0  0  0  0   0   0 50
51  10.2  115.8  0  0  1  0  0  0  0  0  0   0   0 51
52   8.7  102.5  0  0  0  1  0  0  0  0  0   0   0 52
53  13.3  106.6  0  0  0  0  1  0  0  0  0   0   0 53
54  15.0  101.4  0  0  0  0  0  1  0  0  0   0   0 54
55  20.7  136.1  0  0  0  0  0  0  1  0  0   0   0 55
56  20.7  143.4  0  0  0  0  0  0  0  1  0   0   0 56
57  26.4  127.5  0  0  0  0  0  0  0  0  1   0   0 57
58  31.2  113.8  0  0  0  0  0  0  0  0  0   1   0 58
59  31.4   75.3  0  0  0  0  0  0  0  0  0   0   1 59
60  26.6   98.5  0  0  0  0  0  0  0  0  0   0   0 60
61  26.6  113.7  1  0  0  0  0  0  0  0  0   0   0 61
62  19.2  103.7  0  1  0  0  0  0  0  0  0   0   0 62
63   6.5   73.9  0  0  1  0  0  0  0  0  0   0   0 63
64   3.1   52.5  0  0  0  1  0  0  0  0  0   0   0 64
65  -0.2   63.9  0  0  0  0  1  0  0  0  0   0   0 65
66  -4.0   44.9  0  0  0  0  0  1  0  0  0   0   0 66
67 -12.6   31.3  0  0  0  0  0  0  1  0  0   0   0 67
68 -13.0   24.9  0  0  0  0  0  0  0  1  0   0   0 68
69 -17.6   22.8  0  0  0  0  0  0  0  0  1   0   0 69
70 -21.7   24.8  0  0  0  0  0  0  0  0  0   1   0 70
71 -23.2   22.8  0  0  0  0  0  0  0  0  0   0   1 71
72 -16.8   20.9  0  0  0  0  0  0  0  0  0   0   0 72
73 -19.8   21.5  1  0  0  0  0  0  0  0  0   0   0 73
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)       afzetp           M1           M2           M3           M4  
    -0.3957       0.2696      -3.7901      -3.2140      -6.5608      -4.8705  
         M5           M6           M7           M8           M9          M10  
    -3.9758      -2.6516      -7.5417      -2.4559      -2.0420      -2.3101  
        M11            t  
    -0.3028      -0.2100  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
     Min       1Q   Median       3Q      Max 
-22.1044  -5.2982  -0.2371   5.0406  24.1910 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.39571    4.14503  -0.095    0.924    
afzetp       0.26957    0.03108   8.674 4.01e-12 ***
M1          -3.79014    4.67620  -0.811    0.421    
M2          -3.21396    4.88417  -0.658    0.513    
M3          -6.56078    4.91988  -1.334    0.187    
M4          -4.87045    4.88165  -0.998    0.322    
M5          -3.97579    4.86632  -0.817    0.417    
M6          -2.65155    4.85224  -0.546    0.587    
M7          -7.54173    4.88991  -1.542    0.128    
M8          -2.45587    4.84902  -0.506    0.614    
M9          -2.04195    4.84936  -0.421    0.675    
M10         -2.31005    4.85038  -0.476    0.636    
M11         -0.30277    4.84156  -0.063    0.950    
t           -0.21002    0.04853  -4.328 5.91e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 8.385 on 59 degrees of freedom
Multiple R-squared: 0.5791,	Adjusted R-squared: 0.4863 
F-statistic: 6.244 on 13 and 59 DF,  p-value: 3.467e-07 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
             [,1]        [,2]      [,3]
 [1,] 0.026955489 0.053910979 0.9730445
 [2,] 0.010480089 0.020960178 0.9895199
 [3,] 0.006653067 0.013306134 0.9933469
 [4,] 0.002294576 0.004589153 0.9977054
 [5,] 0.003466280 0.006932559 0.9965337
 [6,] 0.006329758 0.012659515 0.9936702
 [7,] 0.003781685 0.007563369 0.9962183
 [8,] 0.002406009 0.004812019 0.9975940
 [9,] 0.002252572 0.004505143 0.9977474
[10,] 0.012558721 0.025117441 0.9874413
[11,] 0.014465818 0.028931635 0.9855342
[12,] 0.007764797 0.015529594 0.9922352
[13,] 0.004143905 0.008287809 0.9958561
[14,] 0.002074347 0.004148694 0.9979257
[15,] 0.001298579 0.002597157 0.9987014
[16,] 0.001338812 0.002677625 0.9986612
[17,] 0.001334097 0.002668193 0.9986659
[18,] 0.001737135 0.003474270 0.9982629
[19,] 0.009387243 0.018774487 0.9906128
[20,] 0.022998569 0.045997138 0.9770014
[21,] 0.099002523 0.198005046 0.9009975
[22,] 0.128507798 0.257015596 0.8714922
[23,] 0.122944689 0.245889379 0.8770553
[24,] 0.091594032 0.183188063 0.9084060
[25,] 0.074262790 0.148525579 0.9257372
[26,] 0.056614480 0.113228960 0.9433855
[27,] 0.050645734 0.101291469 0.9493543
[28,] 0.073358037 0.146716074 0.9266420
[29,] 0.065832846 0.131665691 0.9341672
[30,] 0.059480183 0.118960367 0.9405198
[31,] 0.042663187 0.085326374 0.9573368
[32,] 0.031384577 0.062769153 0.9686154
[33,] 0.018884670 0.037769340 0.9811153
[34,] 0.011233389 0.022466778 0.9887666
[35,] 0.013536887 0.027073774 0.9864631
[36,] 0.035793261 0.071586522 0.9642067
[37,] 0.105008939 0.210017878 0.8949911
[38,] 0.857667767 0.284664466 0.1423322
[39,] 0.873848261 0.252303479 0.1261517
[40,] 0.854302040 0.291395920 0.1456980
> postscript(file="/var/www/html/rcomp/tmp/11ieu1261311809.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/2j24p1261311809.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/3ndtj1261311809.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/4a1pb1261311809.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/51xzq1261311809.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 73 
Frequency = 1 
           1            2            3            4            5            6 
 -3.16593859  -5.29819440  -0.37441545  -3.02429539  -5.37851161  -7.61358258 
           7            8            9           10           11           12 
 -7.00387687  -2.96665599  -1.44191682   4.64496992   2.93900044   0.22708232 
          13           14           15           16           17           18 
  2.97504242  12.81849097   8.25006584   3.16452530   5.57383436   7.80917670 
          19           20           21           22           23           24 
  5.04057942  10.31440003   5.29571393   4.47464849  13.30963065   5.63334188 
          25           26           27           28           29           30 
  5.08211610  -3.36056551  -4.28637951  -5.84759314  -0.62178435  -7.00037435 
          31           32           33           34           35           36 
 -8.99502054  -3.14552684   3.32104060  -4.32958028 -22.10436606  -5.24825075 
          37           38           39           40           41           42 
-12.63075396  -8.36905243  -7.00704550   0.79620528  -0.23709681   3.94611646 
          43           44           45           46           47           48 
  6.48716212   1.72090772  -6.79611886  -9.22150496  -4.59870188  -6.73929880 
          49           50           51           52           53           54 
  0.87127869  -3.66714477  -3.34865687  -2.74371534   0.06640785   2.05394177 
          55           56           57           58           59           60 
  3.50012220  -3.34355855   6.43866324  15.40986437  24.19096419  13.04423086 
          61           62           63           64           65           66 
 12.94694992   7.87646613   6.76643149   7.65487330   0.59715056   0.80472198 
          67           68           69           70           71           72 
  0.97103367  -2.57956638  -6.81738209 -10.97839753 -13.73652734  -6.91710551 
          73 
 -6.07869459 
> postscript(file="/var/www/html/rcomp/tmp/66q3i1261311809.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 73 
Frequency = 1 
   lag(myerror, k = 1)      myerror
 0         -3.16593859           NA
 1         -5.29819440  -3.16593859
 2         -0.37441545  -5.29819440
 3         -3.02429539  -0.37441545
 4         -5.37851161  -3.02429539
 5         -7.61358258  -5.37851161
 6         -7.00387687  -7.61358258
 7         -2.96665599  -7.00387687
 8         -1.44191682  -2.96665599
 9          4.64496992  -1.44191682
10          2.93900044   4.64496992
11          0.22708232   2.93900044
12          2.97504242   0.22708232
13         12.81849097   2.97504242
14          8.25006584  12.81849097
15          3.16452530   8.25006584
16          5.57383436   3.16452530
17          7.80917670   5.57383436
18          5.04057942   7.80917670
19         10.31440003   5.04057942
20          5.29571393  10.31440003
21          4.47464849   5.29571393
22         13.30963065   4.47464849
23          5.63334188  13.30963065
24          5.08211610   5.63334188
25         -3.36056551   5.08211610
26         -4.28637951  -3.36056551
27         -5.84759314  -4.28637951
28         -0.62178435  -5.84759314
29         -7.00037435  -0.62178435
30         -8.99502054  -7.00037435
31         -3.14552684  -8.99502054
32          3.32104060  -3.14552684
33         -4.32958028   3.32104060
34        -22.10436606  -4.32958028
35         -5.24825075 -22.10436606
36        -12.63075396  -5.24825075
37         -8.36905243 -12.63075396
38         -7.00704550  -8.36905243
39          0.79620528  -7.00704550
40         -0.23709681   0.79620528
41          3.94611646  -0.23709681
42          6.48716212   3.94611646
43          1.72090772   6.48716212
44         -6.79611886   1.72090772
45         -9.22150496  -6.79611886
46         -4.59870188  -9.22150496
47         -6.73929880  -4.59870188
48          0.87127869  -6.73929880
49         -3.66714477   0.87127869
50         -3.34865687  -3.66714477
51         -2.74371534  -3.34865687
52          0.06640785  -2.74371534
53          2.05394177   0.06640785
54          3.50012220   2.05394177
55         -3.34355855   3.50012220
56          6.43866324  -3.34355855
57         15.40986437   6.43866324
58         24.19096419  15.40986437
59         13.04423086  24.19096419
60         12.94694992  13.04423086
61          7.87646613  12.94694992
62          6.76643149   7.87646613
63          7.65487330   6.76643149
64          0.59715056   7.65487330
65          0.80472198   0.59715056
66          0.97103367   0.80472198
67         -2.57956638   0.97103367
68         -6.81738209  -2.57956638
69        -10.97839753  -6.81738209
70        -13.73652734 -10.97839753
71         -6.91710551 -13.73652734
72         -6.07869459  -6.91710551
73                  NA  -6.07869459
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)      myerror
 [1,]         -5.29819440  -3.16593859
 [2,]         -0.37441545  -5.29819440
 [3,]         -3.02429539  -0.37441545
 [4,]         -5.37851161  -3.02429539
 [5,]         -7.61358258  -5.37851161
 [6,]         -7.00387687  -7.61358258
 [7,]         -2.96665599  -7.00387687
 [8,]         -1.44191682  -2.96665599
 [9,]          4.64496992  -1.44191682
[10,]          2.93900044   4.64496992
[11,]          0.22708232   2.93900044
[12,]          2.97504242   0.22708232
[13,]         12.81849097   2.97504242
[14,]          8.25006584  12.81849097
[15,]          3.16452530   8.25006584
[16,]          5.57383436   3.16452530
[17,]          7.80917670   5.57383436
[18,]          5.04057942   7.80917670
[19,]         10.31440003   5.04057942
[20,]          5.29571393  10.31440003
[21,]          4.47464849   5.29571393
[22,]         13.30963065   4.47464849
[23,]          5.63334188  13.30963065
[24,]          5.08211610   5.63334188
[25,]         -3.36056551   5.08211610
[26,]         -4.28637951  -3.36056551
[27,]         -5.84759314  -4.28637951
[28,]         -0.62178435  -5.84759314
[29,]         -7.00037435  -0.62178435
[30,]         -8.99502054  -7.00037435
[31,]         -3.14552684  -8.99502054
[32,]          3.32104060  -3.14552684
[33,]         -4.32958028   3.32104060
[34,]        -22.10436606  -4.32958028
[35,]         -5.24825075 -22.10436606
[36,]        -12.63075396  -5.24825075
[37,]         -8.36905243 -12.63075396
[38,]         -7.00704550  -8.36905243
[39,]          0.79620528  -7.00704550
[40,]         -0.23709681   0.79620528
[41,]          3.94611646  -0.23709681
[42,]          6.48716212   3.94611646
[43,]          1.72090772   6.48716212
[44,]         -6.79611886   1.72090772
[45,]         -9.22150496  -6.79611886
[46,]         -4.59870188  -9.22150496
[47,]         -6.73929880  -4.59870188
[48,]          0.87127869  -6.73929880
[49,]         -3.66714477   0.87127869
[50,]         -3.34865687  -3.66714477
[51,]         -2.74371534  -3.34865687
[52,]          0.06640785  -2.74371534
[53,]          2.05394177   0.06640785
[54,]          3.50012220   2.05394177
[55,]         -3.34355855   3.50012220
[56,]          6.43866324  -3.34355855
[57,]         15.40986437   6.43866324
[58,]         24.19096419  15.40986437
[59,]         13.04423086  24.19096419
[60,]         12.94694992  13.04423086
[61,]          7.87646613  12.94694992
[62,]          6.76643149   7.87646613
[63,]          7.65487330   6.76643149
[64,]          0.59715056   7.65487330
[65,]          0.80472198   0.59715056
[66,]          0.97103367   0.80472198
[67,]         -2.57956638   0.97103367
[68,]         -6.81738209  -2.57956638
[69,]        -10.97839753  -6.81738209
[70,]        -13.73652734 -10.97839753
[71,]         -6.91710551 -13.73652734
[72,]         -6.07869459  -6.91710551
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)      myerror
1          -5.29819440  -3.16593859
2          -0.37441545  -5.29819440
3          -3.02429539  -0.37441545
4          -5.37851161  -3.02429539
5          -7.61358258  -5.37851161
6          -7.00387687  -7.61358258
7          -2.96665599  -7.00387687
8          -1.44191682  -2.96665599
9           4.64496992  -1.44191682
10          2.93900044   4.64496992
11          0.22708232   2.93900044
12          2.97504242   0.22708232
13         12.81849097   2.97504242
14          8.25006584  12.81849097
15          3.16452530   8.25006584
16          5.57383436   3.16452530
17          7.80917670   5.57383436
18          5.04057942   7.80917670
19         10.31440003   5.04057942
20          5.29571393  10.31440003
21          4.47464849   5.29571393
22         13.30963065   4.47464849
23          5.63334188  13.30963065
24          5.08211610   5.63334188
25         -3.36056551   5.08211610
26         -4.28637951  -3.36056551
27         -5.84759314  -4.28637951
28         -0.62178435  -5.84759314
29         -7.00037435  -0.62178435
30         -8.99502054  -7.00037435
31         -3.14552684  -8.99502054
32          3.32104060  -3.14552684
33         -4.32958028   3.32104060
34        -22.10436606  -4.32958028
35         -5.24825075 -22.10436606
36        -12.63075396  -5.24825075
37         -8.36905243 -12.63075396
38         -7.00704550  -8.36905243
39          0.79620528  -7.00704550
40         -0.23709681   0.79620528
41          3.94611646  -0.23709681
42          6.48716212   3.94611646
43          1.72090772   6.48716212
44         -6.79611886   1.72090772
45         -9.22150496  -6.79611886
46         -4.59870188  -9.22150496
47         -6.73929880  -4.59870188
48          0.87127869  -6.73929880
49         -3.66714477   0.87127869
50         -3.34865687  -3.66714477
51         -2.74371534  -3.34865687
52          0.06640785  -2.74371534
53          2.05394177   0.06640785
54          3.50012220   2.05394177
55         -3.34355855   3.50012220
56          6.43866324  -3.34355855
57         15.40986437   6.43866324
58         24.19096419  15.40986437
59         13.04423086  24.19096419
60         12.94694992  13.04423086
61          7.87646613  12.94694992
62          6.76643149   7.87646613
63          7.65487330   6.76643149
64          0.59715056   7.65487330
65          0.80472198   0.59715056
66          0.97103367   0.80472198
67         -2.57956638   0.97103367
68         -6.81738209  -2.57956638
69        -10.97839753  -6.81738209
70        -13.73652734 -10.97839753
71         -6.91710551 -13.73652734
72         -6.07869459  -6.91710551
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/70r8f1261311809.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/8vy5e1261311809.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/9n8px1261311809.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/html/rcomp/tmp/10ml4a1261311809.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/110cbk1261311809.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/12ktcg1261311809.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/13kihv1261311809.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/143qff1261311809.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/151jlk1261311809.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/16vcao1261311809.tab") 
+ }
> 
> try(system("convert tmp/11ieu1261311809.ps tmp/11ieu1261311809.png",intern=TRUE))
character(0)
> try(system("convert tmp/2j24p1261311809.ps tmp/2j24p1261311809.png",intern=TRUE))
character(0)
> try(system("convert tmp/3ndtj1261311809.ps tmp/3ndtj1261311809.png",intern=TRUE))
character(0)
> try(system("convert tmp/4a1pb1261311809.ps tmp/4a1pb1261311809.png",intern=TRUE))
character(0)
> try(system("convert tmp/51xzq1261311809.ps tmp/51xzq1261311809.png",intern=TRUE))
character(0)
> try(system("convert tmp/66q3i1261311809.ps tmp/66q3i1261311809.png",intern=TRUE))
character(0)
> try(system("convert tmp/70r8f1261311809.ps tmp/70r8f1261311809.png",intern=TRUE))
character(0)
> try(system("convert tmp/8vy5e1261311809.ps tmp/8vy5e1261311809.png",intern=TRUE))
character(0)
> try(system("convert tmp/9n8px1261311809.ps tmp/9n8px1261311809.png",intern=TRUE))
character(0)
> try(system("convert tmp/10ml4a1261311809.ps tmp/10ml4a1261311809.png",intern=TRUE))
character(0)
> 
> 
> proc.time()
   user  system elapsed 
  2.576   1.558   3.154