R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(3.2,27.6,2.7,2.6,2.8,24.9,3.2,2.4,2.8,23.8,2.8,2.5,3,24.3,2.8,2.7,3.1,23.6,3,3.2,3.1,24.2,3.1,2.8,3,28.1,3.1,2.8,2.4,30.1,3,3,2.7,31.1,2.4,3.1,3,32,2.7,3.1,2.7,32.4,3,3,2.7,34,2.7,2.4,2,35.1,2.7,2.7,2.4,37.1,2,3,2.6,37.3,2.4,2.7,2.4,38.1,2.6,2.7,2.3,39.5,2.4,2,2.4,38.3,2.3,2.4,2.5,37.3,2.4,2.6,2.6,38.7,2.5,2.4,2.6,37.5,2.6,2.3,2.6,38.7,2.6,2.4,2.7,37.9,2.6,2.5,2.8,36.6,2.7,2.6,2.6,35.5,2.8,2.6,2.6,37.6,2.6,2.6,2,38.6,2.6,2.7,2,40.3,2,2.8,2.1,39,2,2.6,1.9,36.8,2.1,2.6,2,36.5,1.9,2,2.5,34.1,2,2,2.9,34.2,2.5,2.1,3.3,31.9,2.9,1.9,3.5,33.7,3.3,2,3.8,33.5,3.5,2.5,4.6,33.8,3.8,2.9,4.4,29.9,4.6,3.3,5.3,32.3,4.4,3.5,5.8,30.5,5.3,3.8,5.9,28.5,5.8,4.6,5.6,29,5.9,4.4,5.8,23.8,5.6,5.3,5.5,17.9,5.8,5.8,4.6,9.9,5.5,5.9,4.2,3,4.6,5.6,4,4.2,4.2,5.8,3.5,0.4,4,5.5,2.3,0,3.5,4.6,2.2,2.4,2.3,4.2,1.4,4.2,2.2,4,0.6,8.2,1.4,3.5,0,9,0.6,2.3,0.5,13.6,0,2.2,0.1,14,0.5,1.4,0.1,17.6,0.1,0.6),dim=c(4,56),dimnames=list(c('Y','X','Y1','Y2'),1:56)) > y <- array(NA,dim=c(4,56),dimnames=list(c('Y','X','Y1','Y2'),1:56)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'Linear Trend' > par2 = 'Include Monthly Dummies' > par1 = '1' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > library(lmtest) Loading required package: zoo Attaching package: 'zoo' The following object(s) are masked from package:base : as.Date.numeric > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x Y X Y1 Y2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 t 1 3.2 27.6 2.7 2.6 1 0 0 0 0 0 0 0 0 0 0 1 2 2.8 24.9 3.2 2.4 0 1 0 0 0 0 0 0 0 0 0 2 3 2.8 23.8 2.8 2.5 0 0 1 0 0 0 0 0 0 0 0 3 4 3.0 24.3 2.8 2.7 0 0 0 1 0 0 0 0 0 0 0 4 5 3.1 23.6 3.0 3.2 0 0 0 0 1 0 0 0 0 0 0 5 6 3.1 24.2 3.1 2.8 0 0 0 0 0 1 0 0 0 0 0 6 7 3.0 28.1 3.1 2.8 0 0 0 0 0 0 1 0 0 0 0 7 8 2.4 30.1 3.0 3.0 0 0 0 0 0 0 0 1 0 0 0 8 9 2.7 31.1 2.4 3.1 0 0 0 0 0 0 0 0 1 0 0 9 10 3.0 32.0 2.7 3.1 0 0 0 0 0 0 0 0 0 1 0 10 11 2.7 32.4 3.0 3.0 0 0 0 0 0 0 0 0 0 0 1 11 12 2.7 34.0 2.7 2.4 0 0 0 0 0 0 0 0 0 0 0 12 13 2.0 35.1 2.7 2.7 1 0 0 0 0 0 0 0 0 0 0 13 14 2.4 37.1 2.0 3.0 0 1 0 0 0 0 0 0 0 0 0 14 15 2.6 37.3 2.4 2.7 0 0 1 0 0 0 0 0 0 0 0 15 16 2.4 38.1 2.6 2.7 0 0 0 1 0 0 0 0 0 0 0 16 17 2.3 39.5 2.4 2.0 0 0 0 0 1 0 0 0 0 0 0 17 18 2.4 38.3 2.3 2.4 0 0 0 0 0 1 0 0 0 0 0 18 19 2.5 37.3 2.4 2.6 0 0 0 0 0 0 1 0 0 0 0 19 20 2.6 38.7 2.5 2.4 0 0 0 0 0 0 0 1 0 0 0 20 21 2.6 37.5 2.6 2.3 0 0 0 0 0 0 0 0 1 0 0 21 22 2.6 38.7 2.6 2.4 0 0 0 0 0 0 0 0 0 1 0 22 23 2.7 37.9 2.6 2.5 0 0 0 0 0 0 0 0 0 0 1 23 24 2.8 36.6 2.7 2.6 0 0 0 0 0 0 0 0 0 0 0 24 25 2.6 35.5 2.8 2.6 1 0 0 0 0 0 0 0 0 0 0 25 26 2.6 37.6 2.6 2.6 0 1 0 0 0 0 0 0 0 0 0 26 27 2.0 38.6 2.6 2.7 0 0 1 0 0 0 0 0 0 0 0 27 28 2.0 40.3 2.0 2.8 0 0 0 1 0 0 0 0 0 0 0 28 29 2.1 39.0 2.0 2.6 0 0 0 0 1 0 0 0 0 0 0 29 30 1.9 36.8 2.1 2.6 0 0 0 0 0 1 0 0 0 0 0 30 31 2.0 36.5 1.9 2.0 0 0 0 0 0 0 1 0 0 0 0 31 32 2.5 34.1 2.0 2.0 0 0 0 0 0 0 0 1 0 0 0 32 33 2.9 34.2 2.5 2.1 0 0 0 0 0 0 0 0 1 0 0 33 34 3.3 31.9 2.9 1.9 0 0 0 0 0 0 0 0 0 1 0 34 35 3.5 33.7 3.3 2.0 0 0 0 0 0 0 0 0 0 0 1 35 36 3.8 33.5 3.5 2.5 0 0 0 0 0 0 0 0 0 0 0 36 37 4.6 33.8 3.8 2.9 1 0 0 0 0 0 0 0 0 0 0 37 38 4.4 29.9 4.6 3.3 0 1 0 0 0 0 0 0 0 0 0 38 39 5.3 32.3 4.4 3.5 0 0 1 0 0 0 0 0 0 0 0 39 40 5.8 30.5 5.3 3.8 0 0 0 1 0 0 0 0 0 0 0 40 41 5.9 28.5 5.8 4.6 0 0 0 0 1 0 0 0 0 0 0 41 42 5.6 29.0 5.9 4.4 0 0 0 0 0 1 0 0 0 0 0 42 43 5.8 23.8 5.6 5.3 0 0 0 0 0 0 1 0 0 0 0 43 44 5.5 17.9 5.8 5.8 0 0 0 0 0 0 0 1 0 0 0 44 45 4.6 9.9 5.5 5.9 0 0 0 0 0 0 0 0 1 0 0 45 46 4.2 3.0 4.6 5.6 0 0 0 0 0 0 0 0 0 1 0 46 47 4.0 4.2 4.2 5.8 0 0 0 0 0 0 0 0 0 0 1 47 48 3.5 0.4 4.0 5.5 0 0 0 0 0 0 0 0 0 0 0 48 49 2.3 0.0 3.5 4.6 1 0 0 0 0 0 0 0 0 0 0 49 50 2.2 2.4 2.3 4.2 0 1 0 0 0 0 0 0 0 0 0 50 51 1.4 4.2 2.2 4.0 0 0 1 0 0 0 0 0 0 0 0 51 52 0.6 8.2 1.4 3.5 0 0 0 1 0 0 0 0 0 0 0 52 53 0.0 9.0 0.6 2.3 0 0 0 0 1 0 0 0 0 0 0 53 54 0.5 13.6 0.0 2.2 0 0 0 0 0 1 0 0 0 0 0 54 55 0.1 14.0 0.5 1.4 0 0 0 0 0 0 1 0 0 0 0 55 56 0.1 17.6 0.1 0.6 0 0 0 0 0 0 0 1 0 0 0 56 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) X Y1 Y2 M1 M2 -0.292849 0.013424 1.083502 -0.133310 -0.137400 -0.023808 M3 M4 M5 M6 M7 M8 -0.035713 -0.044701 -0.078891 0.010912 -0.035553 -0.081095 M9 M10 M11 t -0.033167 0.103803 -0.028891 0.002703 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -0.71978 -0.26609 -0.02310 0.22740 0.78870 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.292849 0.453430 -0.646 0.522 X 0.013424 0.008012 1.676 0.102 Y1 1.083502 0.081233 13.338 2.60e-16 *** Y2 -0.133310 0.112632 -1.184 0.244 M1 -0.137400 0.275986 -0.498 0.621 M2 -0.023808 0.275796 -0.086 0.932 M3 -0.035713 0.275814 -0.129 0.898 M4 -0.044701 0.276692 -0.162 0.872 M5 -0.078891 0.275954 -0.286 0.776 M6 0.010912 0.276434 0.039 0.969 M7 -0.035553 0.276285 -0.129 0.898 M8 -0.081095 0.276625 -0.293 0.771 M9 -0.033167 0.290904 -0.114 0.910 M10 0.103803 0.290052 0.358 0.722 M11 -0.028891 0.290153 -0.100 0.921 t 0.002703 0.004263 0.634 0.530 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.41 on 40 degrees of freedom Multiple R-squared: 0.9353, Adjusted R-squared: 0.9111 F-statistic: 38.56 on 15 and 40 DF, p-value: < 2.2e-16 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 0.15972606 0.31945213 0.8402739 [2,] 0.46639485 0.93278971 0.5336051 [3,] 0.40455110 0.80910220 0.5954489 [4,] 0.27857747 0.55715494 0.7214225 [5,] 0.18188444 0.36376887 0.8181156 [6,] 0.11979632 0.23959264 0.8802037 [7,] 0.06785989 0.13571978 0.9321401 [8,] 0.03919446 0.07838891 0.9608055 [9,] 0.06076517 0.12153033 0.9392348 [10,] 0.07265874 0.14531749 0.9273413 [11,] 0.06273909 0.12547817 0.9372609 [12,] 0.10310984 0.20621969 0.8968902 [13,] 0.08481801 0.16963603 0.9151820 [14,] 0.06042140 0.12084279 0.9395786 [15,] 0.05801516 0.11603032 0.9419848 [16,] 0.03581856 0.07163712 0.9641814 [17,] 0.02975516 0.05951033 0.9702448 [18,] 0.02397398 0.04794797 0.9760260 [19,] 0.03773676 0.07547352 0.9622632 > postscript(file="/var/www/html/rcomp/tmp/1pazo1261388735.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/2lg3y1261388735.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/3z5if1261388735.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/4wjx71261388735.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/5klc71261388735.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 56 Frequency = 1 1 2 3 4 5 6 0.678182839 -0.370278981 0.100420570 0.326655378 0.317493586 0.055258599 7 8 9 10 11 12 -0.053334698 -0.502333214 0.397042691 0.220237790 -0.293523168 -0.101531914 13 14 15 16 17 18 -0.641609253 0.413691049 0.146813693 -0.274341078 -0.238264984 -0.052988020 19 20 21 22 23 24 0.022510012 0.011541957 -0.144661546 -0.287112304 -0.033051555 -0.042213472 25 26 27 28 29 30 -0.201100177 -0.128886036 -0.719778399 -0.072882833 0.049393621 -0.321929192 31 32 33 34 35 36 -0.037425433 0.429281165 0.248887193 0.080028290 -0.034215076 0.086829842 37 38 39 40 41 42 0.745772485 -0.331644785 0.788699984 0.383990374 0.107222688 -0.427007935 43 44 45 46 47 48 0.331589987 0.003586634 -0.501268338 -0.013153776 0.360789799 0.056915544 49 50 51 52 53 54 -0.581245893 0.417118754 -0.316155848 -0.363421842 -0.235844911 0.746666548 55 56 -0.263339869 0.057923458 > postscript(file="/var/www/html/rcomp/tmp/6xclx1261388735.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 56 Frequency = 1 lag(myerror, k = 1) myerror 0 0.678182839 NA 1 -0.370278981 0.678182839 2 0.100420570 -0.370278981 3 0.326655378 0.100420570 4 0.317493586 0.326655378 5 0.055258599 0.317493586 6 -0.053334698 0.055258599 7 -0.502333214 -0.053334698 8 0.397042691 -0.502333214 9 0.220237790 0.397042691 10 -0.293523168 0.220237790 11 -0.101531914 -0.293523168 12 -0.641609253 -0.101531914 13 0.413691049 -0.641609253 14 0.146813693 0.413691049 15 -0.274341078 0.146813693 16 -0.238264984 -0.274341078 17 -0.052988020 -0.238264984 18 0.022510012 -0.052988020 19 0.011541957 0.022510012 20 -0.144661546 0.011541957 21 -0.287112304 -0.144661546 22 -0.033051555 -0.287112304 23 -0.042213472 -0.033051555 24 -0.201100177 -0.042213472 25 -0.128886036 -0.201100177 26 -0.719778399 -0.128886036 27 -0.072882833 -0.719778399 28 0.049393621 -0.072882833 29 -0.321929192 0.049393621 30 -0.037425433 -0.321929192 31 0.429281165 -0.037425433 32 0.248887193 0.429281165 33 0.080028290 0.248887193 34 -0.034215076 0.080028290 35 0.086829842 -0.034215076 36 0.745772485 0.086829842 37 -0.331644785 0.745772485 38 0.788699984 -0.331644785 39 0.383990374 0.788699984 40 0.107222688 0.383990374 41 -0.427007935 0.107222688 42 0.331589987 -0.427007935 43 0.003586634 0.331589987 44 -0.501268338 0.003586634 45 -0.013153776 -0.501268338 46 0.360789799 -0.013153776 47 0.056915544 0.360789799 48 -0.581245893 0.056915544 49 0.417118754 -0.581245893 50 -0.316155848 0.417118754 51 -0.363421842 -0.316155848 52 -0.235844911 -0.363421842 53 0.746666548 -0.235844911 54 -0.263339869 0.746666548 55 0.057923458 -0.263339869 56 NA 0.057923458 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] -0.370278981 0.678182839 [2,] 0.100420570 -0.370278981 [3,] 0.326655378 0.100420570 [4,] 0.317493586 0.326655378 [5,] 0.055258599 0.317493586 [6,] -0.053334698 0.055258599 [7,] -0.502333214 -0.053334698 [8,] 0.397042691 -0.502333214 [9,] 0.220237790 0.397042691 [10,] -0.293523168 0.220237790 [11,] -0.101531914 -0.293523168 [12,] -0.641609253 -0.101531914 [13,] 0.413691049 -0.641609253 [14,] 0.146813693 0.413691049 [15,] -0.274341078 0.146813693 [16,] -0.238264984 -0.274341078 [17,] -0.052988020 -0.238264984 [18,] 0.022510012 -0.052988020 [19,] 0.011541957 0.022510012 [20,] -0.144661546 0.011541957 [21,] -0.287112304 -0.144661546 [22,] -0.033051555 -0.287112304 [23,] -0.042213472 -0.033051555 [24,] -0.201100177 -0.042213472 [25,] -0.128886036 -0.201100177 [26,] -0.719778399 -0.128886036 [27,] -0.072882833 -0.719778399 [28,] 0.049393621 -0.072882833 [29,] -0.321929192 0.049393621 [30,] -0.037425433 -0.321929192 [31,] 0.429281165 -0.037425433 [32,] 0.248887193 0.429281165 [33,] 0.080028290 0.248887193 [34,] -0.034215076 0.080028290 [35,] 0.086829842 -0.034215076 [36,] 0.745772485 0.086829842 [37,] -0.331644785 0.745772485 [38,] 0.788699984 -0.331644785 [39,] 0.383990374 0.788699984 [40,] 0.107222688 0.383990374 [41,] -0.427007935 0.107222688 [42,] 0.331589987 -0.427007935 [43,] 0.003586634 0.331589987 [44,] -0.501268338 0.003586634 [45,] -0.013153776 -0.501268338 [46,] 0.360789799 -0.013153776 [47,] 0.056915544 0.360789799 [48,] -0.581245893 0.056915544 [49,] 0.417118754 -0.581245893 [50,] -0.316155848 0.417118754 [51,] -0.363421842 -0.316155848 [52,] -0.235844911 -0.363421842 [53,] 0.746666548 -0.235844911 [54,] -0.263339869 0.746666548 [55,] 0.057923458 -0.263339869 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 -0.370278981 0.678182839 2 0.100420570 -0.370278981 3 0.326655378 0.100420570 4 0.317493586 0.326655378 5 0.055258599 0.317493586 6 -0.053334698 0.055258599 7 -0.502333214 -0.053334698 8 0.397042691 -0.502333214 9 0.220237790 0.397042691 10 -0.293523168 0.220237790 11 -0.101531914 -0.293523168 12 -0.641609253 -0.101531914 13 0.413691049 -0.641609253 14 0.146813693 0.413691049 15 -0.274341078 0.146813693 16 -0.238264984 -0.274341078 17 -0.052988020 -0.238264984 18 0.022510012 -0.052988020 19 0.011541957 0.022510012 20 -0.144661546 0.011541957 21 -0.287112304 -0.144661546 22 -0.033051555 -0.287112304 23 -0.042213472 -0.033051555 24 -0.201100177 -0.042213472 25 -0.128886036 -0.201100177 26 -0.719778399 -0.128886036 27 -0.072882833 -0.719778399 28 0.049393621 -0.072882833 29 -0.321929192 0.049393621 30 -0.037425433 -0.321929192 31 0.429281165 -0.037425433 32 0.248887193 0.429281165 33 0.080028290 0.248887193 34 -0.034215076 0.080028290 35 0.086829842 -0.034215076 36 0.745772485 0.086829842 37 -0.331644785 0.745772485 38 0.788699984 -0.331644785 39 0.383990374 0.788699984 40 0.107222688 0.383990374 41 -0.427007935 0.107222688 42 0.331589987 -0.427007935 43 0.003586634 0.331589987 44 -0.501268338 0.003586634 45 -0.013153776 -0.501268338 46 0.360789799 -0.013153776 47 0.056915544 0.360789799 48 -0.581245893 0.056915544 49 0.417118754 -0.581245893 50 -0.316155848 0.417118754 51 -0.363421842 -0.316155848 52 -0.235844911 -0.363421842 53 0.746666548 -0.235844911 54 -0.263339869 0.746666548 55 0.057923458 -0.263339869 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/7afpa1261388735.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/8kmyu1261388735.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/9beyl1261388735.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/www/html/rcomp/tmp/10wo581261388735.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/11j2ev1261388735.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/12x8ip1261388735.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/13nrm91261388736.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/14y6ic1261388736.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/15ivyl1261388736.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/16hf1e1261388736.tab") + } > > try(system("convert tmp/1pazo1261388735.ps tmp/1pazo1261388735.png",intern=TRUE)) character(0) > try(system("convert tmp/2lg3y1261388735.ps tmp/2lg3y1261388735.png",intern=TRUE)) character(0) > try(system("convert tmp/3z5if1261388735.ps tmp/3z5if1261388735.png",intern=TRUE)) character(0) > try(system("convert tmp/4wjx71261388735.ps tmp/4wjx71261388735.png",intern=TRUE)) character(0) > try(system("convert tmp/5klc71261388735.ps tmp/5klc71261388735.png",intern=TRUE)) character(0) > try(system("convert tmp/6xclx1261388735.ps tmp/6xclx1261388735.png",intern=TRUE)) character(0) > try(system("convert tmp/7afpa1261388735.ps tmp/7afpa1261388735.png",intern=TRUE)) character(0) > try(system("convert tmp/8kmyu1261388735.ps tmp/8kmyu1261388735.png",intern=TRUE)) character(0) > try(system("convert tmp/9beyl1261388735.ps tmp/9beyl1261388735.png",intern=TRUE)) character(0) > try(system("convert tmp/10wo581261388735.ps tmp/10wo581261388735.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 2.285 1.520 3.136