R version 2.9.0 (2009-04-17)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(20366,1,22782,1,19169,1,13807,1,29743,1,25591,1,29096,1,26482,1,22405,1,27044,1,17970,1,18730,1,19684,1,19785,1,18479,1,10698,1,31956,1,29506,1,34506,1,27165,1,26736,1,23691,1,18157,1,17328,1,18205,1,20995,1,17382,1,9367,1,31124,1,26551,1,30651,1,25859,1,25100,1,25778,1,20418,1,18688,1,20424,1,24776,1,19814,1,12738,1,31566,1,30111,1,30019,1,31934,1,25826,1,26835,1,20205,1,17789,1,20520,1,22518,1,15572,0,11509,0,25447,0,24090,0,27786,0,26195,0,20516,0,22759,0,19028,0,16971,0),dim=c(2,60),dimnames=list(c('wagens','dummies'),1:60))
>  y <- array(NA,dim=c(2,60),dimnames=list(c('wagens','dummies'),1:60))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'Linear Trend'
> par2 = 'Include Monthly Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
	The following object(s) are masked from package:base :
	 as.Date.numeric 
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
   wagens dummies M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11  t
1   20366       1  1  0  0  0  0  0  0  0  0   0   0  1
2   22782       1  0  1  0  0  0  0  0  0  0   0   0  2
3   19169       1  0  0  1  0  0  0  0  0  0   0   0  3
4   13807       1  0  0  0  1  0  0  0  0  0   0   0  4
5   29743       1  0  0  0  0  1  0  0  0  0   0   0  5
6   25591       1  0  0  0  0  0  1  0  0  0   0   0  6
7   29096       1  0  0  0  0  0  0  1  0  0   0   0  7
8   26482       1  0  0  0  0  0  0  0  1  0   0   0  8
9   22405       1  0  0  0  0  0  0  0  0  1   0   0  9
10  27044       1  0  0  0  0  0  0  0  0  0   1   0 10
11  17970       1  0  0  0  0  0  0  0  0  0   0   1 11
12  18730       1  0  0  0  0  0  0  0  0  0   0   0 12
13  19684       1  1  0  0  0  0  0  0  0  0   0   0 13
14  19785       1  0  1  0  0  0  0  0  0  0   0   0 14
15  18479       1  0  0  1  0  0  0  0  0  0   0   0 15
16  10698       1  0  0  0  1  0  0  0  0  0   0   0 16
17  31956       1  0  0  0  0  1  0  0  0  0   0   0 17
18  29506       1  0  0  0  0  0  1  0  0  0   0   0 18
19  34506       1  0  0  0  0  0  0  1  0  0   0   0 19
20  27165       1  0  0  0  0  0  0  0  1  0   0   0 20
21  26736       1  0  0  0  0  0  0  0  0  1   0   0 21
22  23691       1  0  0  0  0  0  0  0  0  0   1   0 22
23  18157       1  0  0  0  0  0  0  0  0  0   0   1 23
24  17328       1  0  0  0  0  0  0  0  0  0   0   0 24
25  18205       1  1  0  0  0  0  0  0  0  0   0   0 25
26  20995       1  0  1  0  0  0  0  0  0  0   0   0 26
27  17382       1  0  0  1  0  0  0  0  0  0   0   0 27
28   9367       1  0  0  0  1  0  0  0  0  0   0   0 28
29  31124       1  0  0  0  0  1  0  0  0  0   0   0 29
30  26551       1  0  0  0  0  0  1  0  0  0   0   0 30
31  30651       1  0  0  0  0  0  0  1  0  0   0   0 31
32  25859       1  0  0  0  0  0  0  0  1  0   0   0 32
33  25100       1  0  0  0  0  0  0  0  0  1   0   0 33
34  25778       1  0  0  0  0  0  0  0  0  0   1   0 34
35  20418       1  0  0  0  0  0  0  0  0  0   0   1 35
36  18688       1  0  0  0  0  0  0  0  0  0   0   0 36
37  20424       1  1  0  0  0  0  0  0  0  0   0   0 37
38  24776       1  0  1  0  0  0  0  0  0  0   0   0 38
39  19814       1  0  0  1  0  0  0  0  0  0   0   0 39
40  12738       1  0  0  0  1  0  0  0  0  0   0   0 40
41  31566       1  0  0  0  0  1  0  0  0  0   0   0 41
42  30111       1  0  0  0  0  0  1  0  0  0   0   0 42
43  30019       1  0  0  0  0  0  0  1  0  0   0   0 43
44  31934       1  0  0  0  0  0  0  0  1  0   0   0 44
45  25826       1  0  0  0  0  0  0  0  0  1   0   0 45
46  26835       1  0  0  0  0  0  0  0  0  0   1   0 46
47  20205       1  0  0  0  0  0  0  0  0  0   0   1 47
48  17789       1  0  0  0  0  0  0  0  0  0   0   0 48
49  20520       1  1  0  0  0  0  0  0  0  0   0   0 49
50  22518       1  0  1  0  0  0  0  0  0  0   0   0 50
51  15572       0  0  0  1  0  0  0  0  0  0   0   0 51
52  11509       0  0  0  0  1  0  0  0  0  0   0   0 52
53  25447       0  0  0  0  0  1  0  0  0  0   0   0 53
54  24090       0  0  0  0  0  0  1  0  0  0   0   0 54
55  27786       0  0  0  0  0  0  0  1  0  0   0   0 55
56  26195       0  0  0  0  0  0  0  0  1  0   0   0 56
57  20516       0  0  0  0  0  0  0  0  0  1   0   0 57
58  22759       0  0  0  0  0  0  0  0  0  0   1   0 58
59  19028       0  0  0  0  0  0  0  0  0  0   0   1 59
60  16971       0  0  0  0  0  0  0  0  0  0   0   0 60
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)      dummies           M1           M2           M3           M4  
   13837.97      3629.44      1567.06      3866.24       471.92     -6019.70  
         M5           M6           M7           M8           M9          M10  
   12291.49      9461.88     12671.47      9754.65      6312.04      7384.63  
        M11            t  
    1286.61        32.21  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
     Min       1Q   Median       3Q      Max 
-2982.69 -1234.77   -77.98   940.28  3755.07 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 13837.97    1334.39  10.370 1.26e-13 ***
dummies      3629.44     773.85   4.690 2.47e-05 ***
M1           1567.06    1067.13   1.468 0.148779    
M2           3866.24    1065.96   3.627 0.000716 ***
M3            471.92    1067.85   0.442 0.660610    
M4          -6019.70    1065.65  -5.649 9.70e-07 ***
M5          12291.49    1063.69  11.555 3.37e-15 ***
M6           9461.88    1062.00   8.910 1.40e-11 ***
M7          12671.47    1060.56  11.948 1.06e-15 ***
M8           9754.65    1059.38   9.208 5.25e-12 ***
M9           6312.04    1058.47   5.963 3.29e-07 ***
M10          7384.63    1057.81   6.981 9.73e-09 ***
M11          1286.61    1057.42   1.217 0.229906    
t              32.21      16.65   1.935 0.059198 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 1672 on 46 degrees of freedom
Multiple R-squared: 0.9343,	Adjusted R-squared: 0.9157 
F-statistic: 50.28 on 13 and 46 DF,  p-value: < 2.2e-16 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
           [,1]       [,2]       [,3]
 [1,] 0.6003290 0.79934202 0.39967101
 [2,] 0.8049677 0.39006461 0.19503230
 [3,] 0.9662648 0.06747046 0.03373523
 [4,] 0.9347401 0.13051989 0.06525995
 [5,] 0.9687353 0.06252947 0.03126473
 [6,] 0.9745324 0.05093519 0.02546760
 [7,] 0.9548810 0.09023792 0.04511896
 [8,] 0.9328824 0.13423520 0.06711760
 [9,] 0.9113452 0.17730964 0.08865482
[10,] 0.8658953 0.26820943 0.13410471
[11,] 0.8199313 0.36013737 0.18006869
[12,] 0.8803153 0.23936944 0.11968472
[13,] 0.8463100 0.30737991 0.15368995
[14,] 0.8006427 0.39871460 0.19935730
[15,] 0.7304057 0.53918853 0.26959426
[16,] 0.8834687 0.23306251 0.11653125
[17,] 0.8299201 0.34015984 0.17007992
[18,] 0.7669318 0.46613645 0.23306822
[19,] 0.7484859 0.50302820 0.25151410
[20,] 0.6855336 0.62893287 0.31446644
[21,] 0.6308356 0.73832888 0.36916444
[22,] 0.5991905 0.80161903 0.40080952
[23,] 0.4898640 0.97972809 0.51013595
[24,] 0.4736552 0.94731036 0.52634482
[25,] 0.4349162 0.86983234 0.56508383
[26,] 0.4496745 0.89934896 0.55032552
[27,] 0.3269124 0.65382482 0.67308759
> postscript(file="/var/www/html/rcomp/tmp/1lplp1261770226.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/255o41261770226.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/39gug1261770226.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/48gnd1261770226.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/57dfe1261770226.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 60 
Frequency = 1 
           1            2            3            4            5            6 
 1299.314286  1383.914286  1133.025714  2230.425714  -176.974286 -1531.574286 
           7            8            9           10           11           12 
-1268.374286  -997.774286 -1664.374286  1869.825714 -1138.374286   876.025714 
          13           14           15           16           17           18 
  230.757143 -1999.642857    56.468571 -1265.131429  1649.468571  1996.868571 
          19           20           21           22           23           24 
 3755.068571  -701.331429  2280.068571 -1869.731429 -1337.931429  -912.531429 
          25           26           27           28           29           30 
-1634.800000 -1176.200000 -1427.088571 -2982.688571   430.911429 -1344.688571 
          31           32           33           34           35           36 
 -486.488571 -2393.888571   257.511429  -169.288571   536.511429    60.911429 
          37           38           39           40           41           42 
  197.642857  2218.242857   618.354286     1.754286   486.354286  1828.754286 
          43           44           45           46           47           48 
-1505.045714  3294.554286   596.954286   501.154286   -63.045714 -1224.645714 
          49           50           51           52           53           54 
  -92.914286  -426.314286  -380.760000  2015.640000 -2389.760000  -949.360000 
          55           56           57           58           59           60 
 -495.160000   798.440000 -1470.160000  -331.960000  2002.840000  1200.240000 
> postscript(file="/var/www/html/rcomp/tmp/6l21h1261770226.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 60 
Frequency = 1 
   lag(myerror, k = 1)      myerror
 0         1299.314286           NA
 1         1383.914286  1299.314286
 2         1133.025714  1383.914286
 3         2230.425714  1133.025714
 4         -176.974286  2230.425714
 5        -1531.574286  -176.974286
 6        -1268.374286 -1531.574286
 7         -997.774286 -1268.374286
 8        -1664.374286  -997.774286
 9         1869.825714 -1664.374286
10        -1138.374286  1869.825714
11          876.025714 -1138.374286
12          230.757143   876.025714
13        -1999.642857   230.757143
14           56.468571 -1999.642857
15        -1265.131429    56.468571
16         1649.468571 -1265.131429
17         1996.868571  1649.468571
18         3755.068571  1996.868571
19         -701.331429  3755.068571
20         2280.068571  -701.331429
21        -1869.731429  2280.068571
22        -1337.931429 -1869.731429
23         -912.531429 -1337.931429
24        -1634.800000  -912.531429
25        -1176.200000 -1634.800000
26        -1427.088571 -1176.200000
27        -2982.688571 -1427.088571
28          430.911429 -2982.688571
29        -1344.688571   430.911429
30         -486.488571 -1344.688571
31        -2393.888571  -486.488571
32          257.511429 -2393.888571
33         -169.288571   257.511429
34          536.511429  -169.288571
35           60.911429   536.511429
36          197.642857    60.911429
37         2218.242857   197.642857
38          618.354286  2218.242857
39            1.754286   618.354286
40          486.354286     1.754286
41         1828.754286   486.354286
42        -1505.045714  1828.754286
43         3294.554286 -1505.045714
44          596.954286  3294.554286
45          501.154286   596.954286
46          -63.045714   501.154286
47        -1224.645714   -63.045714
48          -92.914286 -1224.645714
49         -426.314286   -92.914286
50         -380.760000  -426.314286
51         2015.640000  -380.760000
52        -2389.760000  2015.640000
53         -949.360000 -2389.760000
54         -495.160000  -949.360000
55          798.440000  -495.160000
56        -1470.160000   798.440000
57         -331.960000 -1470.160000
58         2002.840000  -331.960000
59         1200.240000  2002.840000
60                  NA  1200.240000
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)      myerror
 [1,]         1383.914286  1299.314286
 [2,]         1133.025714  1383.914286
 [3,]         2230.425714  1133.025714
 [4,]         -176.974286  2230.425714
 [5,]        -1531.574286  -176.974286
 [6,]        -1268.374286 -1531.574286
 [7,]         -997.774286 -1268.374286
 [8,]        -1664.374286  -997.774286
 [9,]         1869.825714 -1664.374286
[10,]        -1138.374286  1869.825714
[11,]          876.025714 -1138.374286
[12,]          230.757143   876.025714
[13,]        -1999.642857   230.757143
[14,]           56.468571 -1999.642857
[15,]        -1265.131429    56.468571
[16,]         1649.468571 -1265.131429
[17,]         1996.868571  1649.468571
[18,]         3755.068571  1996.868571
[19,]         -701.331429  3755.068571
[20,]         2280.068571  -701.331429
[21,]        -1869.731429  2280.068571
[22,]        -1337.931429 -1869.731429
[23,]         -912.531429 -1337.931429
[24,]        -1634.800000  -912.531429
[25,]        -1176.200000 -1634.800000
[26,]        -1427.088571 -1176.200000
[27,]        -2982.688571 -1427.088571
[28,]          430.911429 -2982.688571
[29,]        -1344.688571   430.911429
[30,]         -486.488571 -1344.688571
[31,]        -2393.888571  -486.488571
[32,]          257.511429 -2393.888571
[33,]         -169.288571   257.511429
[34,]          536.511429  -169.288571
[35,]           60.911429   536.511429
[36,]          197.642857    60.911429
[37,]         2218.242857   197.642857
[38,]          618.354286  2218.242857
[39,]            1.754286   618.354286
[40,]          486.354286     1.754286
[41,]         1828.754286   486.354286
[42,]        -1505.045714  1828.754286
[43,]         3294.554286 -1505.045714
[44,]          596.954286  3294.554286
[45,]          501.154286   596.954286
[46,]          -63.045714   501.154286
[47,]        -1224.645714   -63.045714
[48,]          -92.914286 -1224.645714
[49,]         -426.314286   -92.914286
[50,]         -380.760000  -426.314286
[51,]         2015.640000  -380.760000
[52,]        -2389.760000  2015.640000
[53,]         -949.360000 -2389.760000
[54,]         -495.160000  -949.360000
[55,]          798.440000  -495.160000
[56,]        -1470.160000   798.440000
[57,]         -331.960000 -1470.160000
[58,]         2002.840000  -331.960000
[59,]         1200.240000  2002.840000
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)      myerror
1          1383.914286  1299.314286
2          1133.025714  1383.914286
3          2230.425714  1133.025714
4          -176.974286  2230.425714
5         -1531.574286  -176.974286
6         -1268.374286 -1531.574286
7          -997.774286 -1268.374286
8         -1664.374286  -997.774286
9          1869.825714 -1664.374286
10        -1138.374286  1869.825714
11          876.025714 -1138.374286
12          230.757143   876.025714
13        -1999.642857   230.757143
14           56.468571 -1999.642857
15        -1265.131429    56.468571
16         1649.468571 -1265.131429
17         1996.868571  1649.468571
18         3755.068571  1996.868571
19         -701.331429  3755.068571
20         2280.068571  -701.331429
21        -1869.731429  2280.068571
22        -1337.931429 -1869.731429
23         -912.531429 -1337.931429
24        -1634.800000  -912.531429
25        -1176.200000 -1634.800000
26        -1427.088571 -1176.200000
27        -2982.688571 -1427.088571
28          430.911429 -2982.688571
29        -1344.688571   430.911429
30         -486.488571 -1344.688571
31        -2393.888571  -486.488571
32          257.511429 -2393.888571
33         -169.288571   257.511429
34          536.511429  -169.288571
35           60.911429   536.511429
36          197.642857    60.911429
37         2218.242857   197.642857
38          618.354286  2218.242857
39            1.754286   618.354286
40          486.354286     1.754286
41         1828.754286   486.354286
42        -1505.045714  1828.754286
43         3294.554286 -1505.045714
44          596.954286  3294.554286
45          501.154286   596.954286
46          -63.045714   501.154286
47        -1224.645714   -63.045714
48          -92.914286 -1224.645714
49         -426.314286   -92.914286
50         -380.760000  -426.314286
51         2015.640000  -380.760000
52        -2389.760000  2015.640000
53         -949.360000 -2389.760000
54         -495.160000  -949.360000
55          798.440000  -495.160000
56        -1470.160000   798.440000
57         -331.960000 -1470.160000
58         2002.840000  -331.960000
59         1200.240000  2002.840000
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/7ioyh1261770226.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/88j1t1261770226.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/9msf91261770226.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/html/rcomp/tmp/10osqd1261770226.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/11ok7h1261770226.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/128vfr1261770226.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/13fbhf1261770226.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/14dx0d1261770227.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/156wh61261770227.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/16xem01261770227.tab") 
+ }
> 
> try(system("convert tmp/1lplp1261770226.ps tmp/1lplp1261770226.png",intern=TRUE))
character(0)
> try(system("convert tmp/255o41261770226.ps tmp/255o41261770226.png",intern=TRUE))
character(0)
> try(system("convert tmp/39gug1261770226.ps tmp/39gug1261770226.png",intern=TRUE))
character(0)
> try(system("convert tmp/48gnd1261770226.ps tmp/48gnd1261770226.png",intern=TRUE))
character(0)
> try(system("convert tmp/57dfe1261770226.ps tmp/57dfe1261770226.png",intern=TRUE))
character(0)
> try(system("convert tmp/6l21h1261770226.ps tmp/6l21h1261770226.png",intern=TRUE))
character(0)
> try(system("convert tmp/7ioyh1261770226.ps tmp/7ioyh1261770226.png",intern=TRUE))
character(0)
> try(system("convert tmp/88j1t1261770226.ps tmp/88j1t1261770226.png",intern=TRUE))
character(0)
> try(system("convert tmp/9msf91261770226.ps tmp/9msf91261770226.png",intern=TRUE))
character(0)
> try(system("convert tmp/10osqd1261770226.ps tmp/10osqd1261770226.png",intern=TRUE))
character(0)
> 
> 
> proc.time()
   user  system elapsed 
  2.426   1.590   4.736