R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(1.2991,1.3408,1.3119,1.3014,1.3201,1.2938,1.2694,1.2165,1.2037,1.2292,1.2256,1.2015,1.1786,1.1856,1.2103,1.1938,1.202,1.2271,1.277,1.265,1.2684,1.2811,1.2727,1.2611,1.2881,1.3213,1.2999,1.3074,1.3242,1.3516,1.3511,1.3419,1.3716,1.3622,1.3896,1.4227,1.4684,1.457,1.4718,1.4748,1.5527,1.575,1.5557,1.5553,1.577,1.4975,1.4369,1.3322,1.2732,1.3449,1.3239,1.2785,1.305,1.319,1.365,1.4016,1.4088,1.4268,1.4562,1.4816,1.4914) > par10 = 'FALSE' > par9 = '0' > par8 = '0' > par7 = '0' > par6 = '1' > par5 = '12' > par4 = '0' > par3 = '1' > par2 = '1' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 0.3979 s.e. 0.1378 sigma^2 estimated as 0.0009612: log likelihood = 98.54, aic = -193.08 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 50 End = 61 Frequency = 1 [1] 1.249724 1.240383 1.236666 1.235188 1.234599 1.234365 1.234272 1.234235 [9] 1.234220 1.234214 1.234212 1.234211 $se Time Series: Start = 50 End = 61 Frequency = 1 [1] 0.03100275 0.05328607 0.07188309 0.08767680 0.10141937 0.11364936 [7] 0.12473612 0.13493354 0.14441961 0.15332249 0.16173702 0.16973529 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 50 End = 61 Frequency = 1 [1] 1.1889588 1.1359425 1.0957756 1.0633411 1.0358172 1.0116123 0.9897891 [8] 0.9697651 0.9511576 0.9337021 0.9172073 0.9015298 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 50 End = 61 Frequency = 1 [1] 1.310490 1.344824 1.377557 1.407034 1.433381 1.457118 1.478755 1.498705 [9] 1.517282 1.534726 1.551216 1.566892 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 1.299100 1.340800 1.311900 1.301400 1.320100 1.293800 1.269400 1.216500 [9] 1.203700 1.229200 1.225600 1.201500 1.178600 1.185600 1.210300 1.193800 [17] 1.202000 1.227100 1.277000 1.265000 1.268400 1.281100 1.272700 1.261100 [25] 1.288100 1.321300 1.299900 1.307400 1.324200 1.351600 1.351100 1.341900 [33] 1.371600 1.362200 1.389600 1.422700 1.468400 1.457000 1.471800 1.474800 [41] 1.552700 1.575000 1.555700 1.555300 1.577000 1.497500 1.436900 1.332200 [49] 1.273200 1.249724 1.240383 1.236666 1.235188 1.234599 1.234365 1.234272 [57] 1.234235 1.234220 1.234214 1.234212 1.234211 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 50 End = 61 Frequency = 1 [1] 0.02480767 0.04295936 0.05812650 0.07098258 0.08214761 0.09207111 [7] 0.10106049 0.10932566 0.11701285 0.12422680 0.13104478 0.13752535 > postscript(file="/var/www/html/rcomp/tmp/1jjtt1262259709.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2rf201262259709.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3yr451262259709.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4eqsk1262259709.tab") > > try(system("convert tmp/1jjtt1262259709.ps tmp/1jjtt1262259709.png",intern=TRUE)) character(0) > try(system("convert tmp/2rf201262259709.ps tmp/2rf201262259709.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.562 0.309 0.813