R version 2.8.0 (2008-10-20) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(284.4,212.8,226.9,308.4,262,227.9,236.1,320.4,271.9,232.8,237,313.4,261.4,226.8,249.9,314.3,286.1,226.5,260.4,311.4,294.7,232.6,257.2,339.2,279.1,249.8,269.8,345.7,293.8,254.7,277.5,363.4,313.4,272.8,300.1,369.5,330.8,287.8,305.9,386.1,335.2,288,308.3,402.3,352.8,316.1,324.9,404.8,393,318.9,327,442.3,383.1,331.6,361.4,445.9,386.6,357.2,373.6,466.2,409.6,369.8,378.6,487,419.2,376.7,392.8,506.1,458.4,387.4,426.9,565,464.8,444.5,449.5,556.1,499.6,451.9,434.9,553.8,510,432.9,453.2,547.6,485.8,452.6,456.6,565.7,514.8,464.3,430.9,588.3,503.1,442.6,448,554.5,504.5,427.3,473.1,526.2,547.5,440.2,468.7,574.5,492.6,432.6,479.8,575.7,474.6,405.3,434.6,535.1,452.6,429.5,417.2,551.8,464,416.6,422.9,553.6,458.6,427.6,429.2,534.2,481.7,416,440.2,538.7,473.8,439.9,446.8,597.5,467.2,439.4,447.4,568.5,485.9,442.1,430.5,600,464.5,423.6,437,574,443,410,420,532,432,420,411,512) > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) > (n <- length(x)) [1] 152 > (np <- floor(n / par1)) [1] 12 > arr <- array(NA,dim=c(par1,np)) > j <- 0 > k <- 1 > for (i in 1:(np*par1)) + { + j = j + 1 + arr[j,k] <- x[i] + if (j == par1) { + j = 0 + k=k+1 + } + } > arr [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [1,] 284.4 261.4 279.1 330.8 393.0 409.6 464.8 485.8 504.5 474.6 458.6 467.2 [2,] 212.8 226.8 249.8 287.8 318.9 369.8 444.5 452.6 427.3 405.3 427.6 439.4 [3,] 226.9 249.9 269.8 305.9 327.0 378.6 449.5 456.6 473.1 434.6 429.2 447.4 [4,] 308.4 314.3 345.7 386.1 442.3 487.0 556.1 565.7 526.2 535.1 534.2 568.5 [5,] 262.0 286.1 293.8 335.2 383.1 419.2 499.6 514.8 547.5 452.6 481.7 485.9 [6,] 227.9 226.5 254.7 288.0 331.6 376.7 451.9 464.3 440.2 429.5 416.0 442.1 [7,] 236.1 260.4 277.5 308.3 361.4 392.8 434.9 430.9 468.7 417.2 440.2 430.5 [8,] 320.4 311.4 363.4 402.3 445.9 506.1 553.8 588.3 574.5 551.8 538.7 600.0 [9,] 271.9 294.7 313.4 352.8 386.6 458.4 510.0 503.1 492.6 464.0 473.8 464.5 [10,] 232.8 232.6 272.8 316.1 357.2 387.4 432.9 442.6 432.6 416.6 439.9 423.6 [11,] 237.0 257.2 300.1 324.9 373.6 426.9 453.2 448.0 479.8 422.9 446.8 437.0 [12,] 313.4 339.2 369.5 404.8 466.2 565.0 547.6 554.5 575.7 553.6 597.5 574.0 > arr.mean <- array(NA,dim=np) > arr.sd <- array(NA,dim=np) > arr.range <- array(NA,dim=np) > for (j in 1:np) + { + arr.mean[j] <- mean(arr[,j],na.rm=TRUE) + arr.sd[j] <- sd(arr[,j],na.rm=TRUE) + arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE) + } > arr.mean [1] 261.1667 271.7083 299.1333 336.9167 382.2333 431.4583 483.2333 492.2667 [9] 495.2250 463.1500 473.6833 481.6750 > arr.sd [1] 37.85238 37.16131 40.80371 41.29576 48.24972 60.97253 47.81396 53.06484 [9] 51.82160 54.48300 55.53603 62.59627 > arr.range [1] 107.6 112.7 119.7 117.0 147.3 195.2 123.2 157.4 148.4 148.3 181.5 176.4 > (lm1 <- lm(arr.sd~arr.mean)) Call: lm(formula = arr.sd ~ arr.mean) Coefficients: (Intercept) arr.mean 17.17210 0.07915 > (lnlm1 <- lm(log(arr.sd)~log(arr.mean))) Call: lm(formula = log(arr.sd) ~ log(arr.mean)) Coefficients: (Intercept) log(arr.mean) 0.06479 0.63857 > (lm2 <- lm(arr.range~arr.mean)) Call: lm(formula = arr.range ~ arr.mean) Coefficients: (Intercept) arr.mean 54.1683 0.2226 > postscript(file="/var/www/html/rcomp/tmp/1ybi21231414148.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/2if091231414148.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range') > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Section',header=TRUE) > a<-table.element(a,'Mean',header=TRUE) > a<-table.element(a,'Standard Deviation',header=TRUE) > a<-table.element(a,'Range',header=TRUE) > a<-table.row.end(a) > for (j in 1:np) { + a<-table.row.start(a) + a<-table.element(a,j,header=TRUE) + a<-table.element(a,arr.mean[j]) + a<-table.element(a,arr.sd[j] ) + a<-table.element(a,arr.range[j] ) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3auv91231414148.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'alpha',header=TRUE) > a<-table.element(a,lm1$coefficients[[1]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'beta',header=TRUE) > a<-table.element(a,lm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'T-STAT',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'p-value',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,4]) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4b9fq1231414148.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'alpha',header=TRUE) > a<-table.element(a,lnlm1$coefficients[[1]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'beta',header=TRUE) > a<-table.element(a,lnlm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'T-STAT',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'p-value',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,4]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Lambda',header=TRUE) > a<-table.element(a,1-lnlm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/57eph1231414148.tab") > > system("convert tmp/1ybi21231414148.ps tmp/1ybi21231414148.png") > system("convert tmp/2if091231414148.ps tmp/2if091231414148.png") > > > proc.time() user system elapsed 0.503 0.270 0.657