Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_edabi.wasp
Title produced by softwareBivariate Explorative Data Analysis
Date of computationMon, 02 Nov 2009 07:33:48 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/02/t1257172540hrd2aefis50dw4e.htm/, Retrieved Tue, 12 Nov 2024 22:16:55 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=52673, Retrieved Tue, 12 Nov 2024 22:16:55 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact169
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Bivariate Data Series] [Bivariate dataset] [2008-01-05 23:51:08] [74be16979710d4c4e7c6647856088456]
-   PD  [Bivariate Data Series] [Reproduction Part 1] [2009-10-26 18:51:43] [96e597a9107bfe8c07649cce3d4f6fec]
- RMPD    [Bivariate Explorative Data Analysis] [JJ Workshop 4, De...] [2009-10-26 19:42:48] [96e597a9107bfe8c07649cce3d4f6fec]
-    D      [Bivariate Explorative Data Analysis] [JJ Workshop 4, de...] [2009-10-27 18:56:34] [96e597a9107bfe8c07649cce3d4f6fec]
- RM D        [Bivariate Explorative Data Analysis] [JJ Workshop 5, mo...] [2009-11-02 13:09:27] [96e597a9107bfe8c07649cce3d4f6fec]
-    D            [Bivariate Explorative Data Analysis] [JJ Workshop 5, mo...] [2009-11-02 14:33:48] [e31f2fa83f4a5291b9a51009566cf69b] [Current]
Feedback Forum

Post a new message
Dataseries X:
160
171.4
192
231.2
250.8
268.4
266.9
268.5
268.2
265.3
253.8
243.4
213.6
221
227.3
221.6
222.1
232.2
229.6
238.9
238.2
223.9
215
211.1
210.6
206.6
207
201.7
204.5
204.5
195.1
205.5
187.5
173.5
172.3
167.5
157.5
151.1
148.5
147.9
145.6
139.8
138.9
141.4
148.7
150.9
147.3
144.5
134
135.1
131.4
128.4
127.6
127.4
124
123.5
128
129.9
127.6
121.8
Dataseries Y:
4,442651256
4,565389316
4,732683506
4,76046307
4,631812117
4,670957927
4,821893169
4,768988271
4,80073697
4,769836808
4,713127327
4,698660529
4,528289142
4,653007515
4,789988623
4,692264893
4,533674184
4,469350463
4,671893818
4,625952725
4,628886713
4,730039168
4,611152258
4,639571613
4,540098189
4,630837933
4,683056725
4,662495253
4,467056884
4,404277244
4,642465971
4,562262685
4,529368473
4,616110126
4,477336814
4,53044664
4,496470769
4,56017282
4,555979942
4,573679519
4,371976299
4,297285406
4,602165677
4,475061501
4,514150788
4,542230386
4,49980967
4,497584975
4,487512143
4,646312129
4,707726774
4,705015521
4,467056884
4,49088104
4,569543008
4,558078578
4,615120517
4,678420648
4,541164856
4,541164856




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=52673&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=52673&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=52673&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Model: Y[t] = c + b X[t] + e[t]
c4.35044576240166
b0.00131270673409126

\begin{tabular}{lllllllll}
\hline
Model: Y[t] = c + b X[t] + e[t] \tabularnewline
c & 4.35044576240166 \tabularnewline
b & 0.00131270673409126 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=52673&T=1

[TABLE]
[ROW][C]Model: Y[t] = c + b X[t] + e[t][/C][/ROW]
[ROW][C]c[/C][C]4.35044576240166[/C][/ROW]
[ROW][C]b[/C][C]0.00131270673409126[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=52673&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=52673&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Model: Y[t] = c + b X[t] + e[t]
c4.35044576240166
b0.00131270673409126







Descriptive Statistics about e[t]
# observations60
minimum-0.236676757827616
Q1-0.0486179351517354
median0.0109871498314706
mean2.02435227507463e-18
Q30.0574613750886318
maximum0.186018213941024

\begin{tabular}{lllllllll}
\hline
Descriptive Statistics about e[t] \tabularnewline
# observations & 60 \tabularnewline
minimum & -0.236676757827616 \tabularnewline
Q1 & -0.0486179351517354 \tabularnewline
median & 0.0109871498314706 \tabularnewline
mean & 2.02435227507463e-18 \tabularnewline
Q3 & 0.0574613750886318 \tabularnewline
maximum & 0.186018213941024 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=52673&T=2

[TABLE]
[ROW][C]Descriptive Statistics about e[t][/C][/ROW]
[ROW][C]# observations[/C][C]60[/C][/ROW]
[ROW][C]minimum[/C][C]-0.236676757827616[/C][/ROW]
[ROW][C]Q1[/C][C]-0.0486179351517354[/C][/ROW]
[ROW][C]median[/C][C]0.0109871498314706[/C][/ROW]
[ROW][C]mean[/C][C]2.02435227507463e-18[/C][/ROW]
[ROW][C]Q3[/C][C]0.0574613750886318[/C][/ROW]
[ROW][C]maximum[/C][C]0.186018213941024[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=52673&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=52673&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Descriptive Statistics about e[t]
# observations60
minimum-0.236676757827616
Q1-0.0486179351517354
median0.0109871498314706
mean2.02435227507463e-18
Q30.0574613750886318
maximum0.186018213941024



Parameters (Session):
par1 = 0 ; par2 = 36 ;
Parameters (R input):
par1 = 0 ; par2 = 36 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
x <- as.ts(x)
y <- as.ts(y)
mylm <- lm(y~x)
cbind(mylm$resid)
library(lattice)
bitmap(file='pic1.png')
plot(y,type='l',main='Run Sequence Plot of Y[t]',xlab='time or index',ylab='value')
grid()
dev.off()
bitmap(file='pic1a.png')
plot(x,type='l',main='Run Sequence Plot of X[t]',xlab='time or index',ylab='value')
grid()
dev.off()
bitmap(file='pic1b.png')
plot(x,y,main='Scatter Plot',xlab='X[t]',ylab='Y[t]')
grid()
dev.off()
bitmap(file='pic1c.png')
plot(mylm$resid,type='l',main='Run Sequence Plot of e[t]',xlab='time or index',ylab='value')
grid()
dev.off()
bitmap(file='pic2.png')
hist(mylm$resid,main='Histogram of e[t]')
dev.off()
bitmap(file='pic3.png')
if (par1 > 0)
{
densityplot(~mylm$resid,col='black',main=paste('Density Plot of e[t] bw = ',par1),bw=par1)
} else {
densityplot(~mylm$resid,col='black',main='Density Plot of e[t]')
}
dev.off()
bitmap(file='pic4.png')
qqnorm(mylm$resid,main='QQ plot of e[t]')
qqline(mylm$resid)
grid()
dev.off()
if (par2 > 0)
{
bitmap(file='pic5.png')
acf(mylm$resid,lag.max=par2,main='Residual Autocorrelation Function')
grid()
dev.off()
}
summary(x)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Model: Y[t] = c + b X[t] + e[t]',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'c',1,TRUE)
a<-table.element(a,mylm$coeff[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'b',1,TRUE)
a<-table.element(a,mylm$coeff[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Descriptive Statistics about e[t]',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'# observations',header=TRUE)
a<-table.element(a,length(mylm$resid))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'minimum',header=TRUE)
a<-table.element(a,min(mylm$resid))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Q1',header=TRUE)
a<-table.element(a,quantile(mylm$resid,0.25))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'median',header=TRUE)
a<-table.element(a,median(mylm$resid))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
a<-table.element(a,mean(mylm$resid))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Q3',header=TRUE)
a<-table.element(a,quantile(mylm$resid,0.75))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'maximum',header=TRUE)
a<-table.element(a,max(mylm$resid))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')