R version 2.9.0 (2009-04-17)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(103.63,100.30,103.64,98.50,103.66,95.10,103.77,93.10,103.88,92.20,103.91,89.00,103.91,86.40,103.92,84.50,104.05,82.70,104.23,80.80,104.30,81.80,104.31,81.80,104.31,82.90,104.34,83.80,104.55,86.20,104.65,86.10,104.73,86.20,104.75,88.80,104.75,89.60,104.76,87.80,104.94,88.30,105.29,88.60,105.38,91.00,105.43,91.50,105.43,95.40,105.42,98.70,105.52,99.90,105.69,98.60,105.72,100.30,105.74,100.20,105.74,100.40,105.74,101.40,105.95,103.00,106.17,109.10,106.34,111.40,106.37,114.10,106.37,121.80,106.36,127.60,106.44,129.90,106.29,128.00,106.23,123.50,106.23,124.00,106.23,127.40,106.23,127.60,106.34,128.40,106.44,131.40,106.44,135.10,106.48,134.00,106.50,144.50,106.57,147.30,106.40,150.90,106.37,148.70,106.25,141.40,106.21,138.90,106.21,139.80,106.24,145.60,106.19,147.90,106.08,148.50,106.13,151.10,106.09,157.50),dim=c(2,60),dimnames=list(c('Y','X'),1:60))
>  y <- array(NA,dim=c(2,60),dimnames=list(c('Y','X'),1:60))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'Linear Trend'
> par2 = 'Include Monthly Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
	The following object(s) are masked from package:base :
	 as.Date.numeric 
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
        Y     X M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11  t
1  103.63 100.3  1  0  0  0  0  0  0  0  0   0   0  1
2  103.64  98.5  0  1  0  0  0  0  0  0  0   0   0  2
3  103.66  95.1  0  0  1  0  0  0  0  0  0   0   0  3
4  103.77  93.1  0  0  0  1  0  0  0  0  0   0   0  4
5  103.88  92.2  0  0  0  0  1  0  0  0  0   0   0  5
6  103.91  89.0  0  0  0  0  0  1  0  0  0   0   0  6
7  103.91  86.4  0  0  0  0  0  0  1  0  0   0   0  7
8  103.92  84.5  0  0  0  0  0  0  0  1  0   0   0  8
9  104.05  82.7  0  0  0  0  0  0  0  0  1   0   0  9
10 104.23  80.8  0  0  0  0  0  0  0  0  0   1   0 10
11 104.30  81.8  0  0  0  0  0  0  0  0  0   0   1 11
12 104.31  81.8  0  0  0  0  0  0  0  0  0   0   0 12
13 104.31  82.9  1  0  0  0  0  0  0  0  0   0   0 13
14 104.34  83.8  0  1  0  0  0  0  0  0  0   0   0 14
15 104.55  86.2  0  0  1  0  0  0  0  0  0   0   0 15
16 104.65  86.1  0  0  0  1  0  0  0  0  0   0   0 16
17 104.73  86.2  0  0  0  0  1  0  0  0  0   0   0 17
18 104.75  88.8  0  0  0  0  0  1  0  0  0   0   0 18
19 104.75  89.6  0  0  0  0  0  0  1  0  0   0   0 19
20 104.76  87.8  0  0  0  0  0  0  0  1  0   0   0 20
21 104.94  88.3  0  0  0  0  0  0  0  0  1   0   0 21
22 105.29  88.6  0  0  0  0  0  0  0  0  0   1   0 22
23 105.38  91.0  0  0  0  0  0  0  0  0  0   0   1 23
24 105.43  91.5  0  0  0  0  0  0  0  0  0   0   0 24
25 105.43  95.4  1  0  0  0  0  0  0  0  0   0   0 25
26 105.42  98.7  0  1  0  0  0  0  0  0  0   0   0 26
27 105.52  99.9  0  0  1  0  0  0  0  0  0   0   0 27
28 105.69  98.6  0  0  0  1  0  0  0  0  0   0   0 28
29 105.72 100.3  0  0  0  0  1  0  0  0  0   0   0 29
30 105.74 100.2  0  0  0  0  0  1  0  0  0   0   0 30
31 105.74 100.4  0  0  0  0  0  0  1  0  0   0   0 31
32 105.74 101.4  0  0  0  0  0  0  0  1  0   0   0 32
33 105.95 103.0  0  0  0  0  0  0  0  0  1   0   0 33
34 106.17 109.1  0  0  0  0  0  0  0  0  0   1   0 34
35 106.34 111.4  0  0  0  0  0  0  0  0  0   0   1 35
36 106.37 114.1  0  0  0  0  0  0  0  0  0   0   0 36
37 106.37 121.8  1  0  0  0  0  0  0  0  0   0   0 37
38 106.36 127.6  0  1  0  0  0  0  0  0  0   0   0 38
39 106.44 129.9  0  0  1  0  0  0  0  0  0   0   0 39
40 106.29 128.0  0  0  0  1  0  0  0  0  0   0   0 40
41 106.23 123.5  0  0  0  0  1  0  0  0  0   0   0 41
42 106.23 124.0  0  0  0  0  0  1  0  0  0   0   0 42
43 106.23 127.4  0  0  0  0  0  0  1  0  0   0   0 43
44 106.23 127.6  0  0  0  0  0  0  0  1  0   0   0 44
45 106.34 128.4  0  0  0  0  0  0  0  0  1   0   0 45
46 106.44 131.4  0  0  0  0  0  0  0  0  0   1   0 46
47 106.44 135.1  0  0  0  0  0  0  0  0  0   0   1 47
48 106.48 134.0  0  0  0  0  0  0  0  0  0   0   0 48
49 106.50 144.5  1  0  0  0  0  0  0  0  0   0   0 49
50 106.57 147.3  0  1  0  0  0  0  0  0  0   0   0 50
51 106.40 150.9  0  0  1  0  0  0  0  0  0   0   0 51
52 106.37 148.7  0  0  0  1  0  0  0  0  0   0   0 52
53 106.25 141.4  0  0  0  0  1  0  0  0  0   0   0 53
54 106.21 138.9  0  0  0  0  0  1  0  0  0   0   0 54
55 106.21 139.8  0  0  0  0  0  0  1  0  0   0   0 55
56 106.24 145.6  0  0  0  0  0  0  0  1  0   0   0 56
57 106.19 147.9  0  0  0  0  0  0  0  0  1   0   0 57
58 106.08 148.5  0  0  0  0  0  0  0  0  0   1   0 58
59 106.13 151.1  0  0  0  0  0  0  0  0  0   0   1 59
60 106.09 157.5  0  0  0  0  0  0  0  0  0   0   0 60
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)            X           M1           M2           M3           M4  
  105.38411     -0.02187      0.24460      0.23060      0.22516      0.15223  
         M5           M6           M7           M8           M9          M10  
    0.03243     -0.05351     -0.12182     -0.17750     -0.12675     -0.02344  
        M11            t  
    0.02494      0.08012  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.70117 -0.16348  0.01238  0.20317  0.59725 
Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) 105.384112   0.428976 245.665  < 2e-16 ***
X            -0.021873   0.005622  -3.891  0.00032 ***
M1            0.244600   0.229863   1.064  0.29283    
M2            0.230600   0.230516   1.000  0.32237    
M3            0.225164   0.230118   0.978  0.33296    
M4            0.152232   0.227147   0.670  0.50609    
M5            0.032426   0.225045   0.144  0.88606    
M6           -0.053507   0.224536  -0.238  0.81271    
M7           -0.121817   0.224374  -0.543  0.58981    
M8           -0.177502   0.224306  -0.791  0.43281    
M9           -0.126750   0.224325  -0.565  0.57480    
M10          -0.023437   0.224171  -0.105  0.91719    
M11           0.024937   0.223977   0.111  0.91183    
t             0.080122   0.007817  10.250 1.85e-13 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 0.3541 on 46 degrees of freedom
Multiple R-squared: 0.8955,	Adjusted R-squared: 0.866 
F-statistic: 30.34 on 13 and 46 DF,  p-value: < 2.2e-16 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
              [,1]         [,2]      [,3]
 [1,] 9.264876e-04 1.852975e-03 0.9990735
 [2,] 7.189442e-04 1.437888e-03 0.9992811
 [3,] 2.677226e-04 5.354452e-04 0.9997323
 [4,] 9.285373e-05 1.857075e-04 0.9999071
 [5,] 4.004564e-05 8.009127e-05 0.9999600
 [6,] 7.968637e-05 1.593727e-04 0.9999203
 [7,] 9.244199e-05 1.848840e-04 0.9999076
 [8,] 1.048257e-04 2.096515e-04 0.9998952
 [9,] 6.008624e-05 1.201725e-04 0.9999399
[10,] 4.117091e-05 8.234182e-05 0.9999588
[11,] 2.366089e-05 4.732177e-05 0.9999763
[12,] 7.060429e-06 1.412086e-05 0.9999929
[13,] 7.481438e-06 1.496288e-05 0.9999925
[14,] 1.124559e-05 2.249118e-05 0.9999888
[15,] 1.953692e-05 3.907384e-05 0.9999805
[16,] 9.784133e-05 1.956827e-04 0.9999022
[17,] 1.903341e-04 3.806682e-04 0.9998097
[18,] 4.862273e-04 9.724545e-04 0.9995138
[19,] 1.998704e-04 3.997408e-04 0.9998001
[20,] 7.969080e-05 1.593816e-04 0.9999203
[21,] 1.014297e-04 2.028593e-04 0.9998986
[22,] 9.063732e-04 1.812746e-03 0.9990936
[23,] 1.228974e-03 2.457949e-03 0.9987710
[24,] 1.035686e-01 2.071371e-01 0.8964314
[25,] 3.861615e-01 7.723230e-01 0.6138385
[26,] 4.548784e-01 9.097568e-01 0.5451216
[27,] 4.109190e-01 8.218379e-01 0.5890810
> postscript(file="/var/www/html/rcomp/tmp/1jixy1258205473.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/2avat1258205473.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/3q6ga1258205473.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/4xul11258205473.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/5iram1258205473.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 60 
Frequency = 1 
           1            2            3            4            5            6 
 0.115061280  0.019567934 -0.109486880 -0.050423548  0.079574323  0.045391248 
           7            8            9           10           11           12 
-0.023291028 -0.079286769 -0.119532644 -0.164526788 -0.201149458 -0.246334130 
          13           14           15           16           17           18 
-0.546995693 -0.563431030 -0.375620493 -0.284997822 -0.163126615 -0.080444339 
          19           20           21           22           23           24 
-0.074757272 -0.128565679 -0.068502880  0.104624316  0.118624316  0.124376313 
          25           26           27           28           29           30 
-0.115039908 -0.118979238 -0.067416705  0.066957963  0.173826508  0.197450776 
          31           32           33           34           35           36 
 0.190013841  0.187450776  0.301574245  0.471566792  0.563379459  0.597252795 
          37           38           39           40           41           42 
 0.440955252  0.491699263  0.547322467  0.348573132  0.229826992  0.246575262 
          43           44           45           46           47           48 
 0.309133004  0.289071269  0.285696069  0.267881273  0.220316611  0.181071269 
          49           50           51           52           53           54 
 0.106019068  0.171143070  0.005201611 -0.080109725 -0.320101207 -0.408972946 
          55           56           57           58           59           60 
-0.401098545 -0.268669596 -0.399234791 -0.679545594 -0.701170927 -0.656366246 
> postscript(file="/var/www/html/rcomp/tmp/61zhg1258205473.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 60 
Frequency = 1 
   lag(myerror, k = 1)      myerror
 0         0.115061280           NA
 1         0.019567934  0.115061280
 2        -0.109486880  0.019567934
 3        -0.050423548 -0.109486880
 4         0.079574323 -0.050423548
 5         0.045391248  0.079574323
 6        -0.023291028  0.045391248
 7        -0.079286769 -0.023291028
 8        -0.119532644 -0.079286769
 9        -0.164526788 -0.119532644
10        -0.201149458 -0.164526788
11        -0.246334130 -0.201149458
12        -0.546995693 -0.246334130
13        -0.563431030 -0.546995693
14        -0.375620493 -0.563431030
15        -0.284997822 -0.375620493
16        -0.163126615 -0.284997822
17        -0.080444339 -0.163126615
18        -0.074757272 -0.080444339
19        -0.128565679 -0.074757272
20        -0.068502880 -0.128565679
21         0.104624316 -0.068502880
22         0.118624316  0.104624316
23         0.124376313  0.118624316
24        -0.115039908  0.124376313
25        -0.118979238 -0.115039908
26        -0.067416705 -0.118979238
27         0.066957963 -0.067416705
28         0.173826508  0.066957963
29         0.197450776  0.173826508
30         0.190013841  0.197450776
31         0.187450776  0.190013841
32         0.301574245  0.187450776
33         0.471566792  0.301574245
34         0.563379459  0.471566792
35         0.597252795  0.563379459
36         0.440955252  0.597252795
37         0.491699263  0.440955252
38         0.547322467  0.491699263
39         0.348573132  0.547322467
40         0.229826992  0.348573132
41         0.246575262  0.229826992
42         0.309133004  0.246575262
43         0.289071269  0.309133004
44         0.285696069  0.289071269
45         0.267881273  0.285696069
46         0.220316611  0.267881273
47         0.181071269  0.220316611
48         0.106019068  0.181071269
49         0.171143070  0.106019068
50         0.005201611  0.171143070
51        -0.080109725  0.005201611
52        -0.320101207 -0.080109725
53        -0.408972946 -0.320101207
54        -0.401098545 -0.408972946
55        -0.268669596 -0.401098545
56        -0.399234791 -0.268669596
57        -0.679545594 -0.399234791
58        -0.701170927 -0.679545594
59        -0.656366246 -0.701170927
60                  NA -0.656366246
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)      myerror
 [1,]         0.019567934  0.115061280
 [2,]        -0.109486880  0.019567934
 [3,]        -0.050423548 -0.109486880
 [4,]         0.079574323 -0.050423548
 [5,]         0.045391248  0.079574323
 [6,]        -0.023291028  0.045391248
 [7,]        -0.079286769 -0.023291028
 [8,]        -0.119532644 -0.079286769
 [9,]        -0.164526788 -0.119532644
[10,]        -0.201149458 -0.164526788
[11,]        -0.246334130 -0.201149458
[12,]        -0.546995693 -0.246334130
[13,]        -0.563431030 -0.546995693
[14,]        -0.375620493 -0.563431030
[15,]        -0.284997822 -0.375620493
[16,]        -0.163126615 -0.284997822
[17,]        -0.080444339 -0.163126615
[18,]        -0.074757272 -0.080444339
[19,]        -0.128565679 -0.074757272
[20,]        -0.068502880 -0.128565679
[21,]         0.104624316 -0.068502880
[22,]         0.118624316  0.104624316
[23,]         0.124376313  0.118624316
[24,]        -0.115039908  0.124376313
[25,]        -0.118979238 -0.115039908
[26,]        -0.067416705 -0.118979238
[27,]         0.066957963 -0.067416705
[28,]         0.173826508  0.066957963
[29,]         0.197450776  0.173826508
[30,]         0.190013841  0.197450776
[31,]         0.187450776  0.190013841
[32,]         0.301574245  0.187450776
[33,]         0.471566792  0.301574245
[34,]         0.563379459  0.471566792
[35,]         0.597252795  0.563379459
[36,]         0.440955252  0.597252795
[37,]         0.491699263  0.440955252
[38,]         0.547322467  0.491699263
[39,]         0.348573132  0.547322467
[40,]         0.229826992  0.348573132
[41,]         0.246575262  0.229826992
[42,]         0.309133004  0.246575262
[43,]         0.289071269  0.309133004
[44,]         0.285696069  0.289071269
[45,]         0.267881273  0.285696069
[46,]         0.220316611  0.267881273
[47,]         0.181071269  0.220316611
[48,]         0.106019068  0.181071269
[49,]         0.171143070  0.106019068
[50,]         0.005201611  0.171143070
[51,]        -0.080109725  0.005201611
[52,]        -0.320101207 -0.080109725
[53,]        -0.408972946 -0.320101207
[54,]        -0.401098545 -0.408972946
[55,]        -0.268669596 -0.401098545
[56,]        -0.399234791 -0.268669596
[57,]        -0.679545594 -0.399234791
[58,]        -0.701170927 -0.679545594
[59,]        -0.656366246 -0.701170927
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)      myerror
1          0.019567934  0.115061280
2         -0.109486880  0.019567934
3         -0.050423548 -0.109486880
4          0.079574323 -0.050423548
5          0.045391248  0.079574323
6         -0.023291028  0.045391248
7         -0.079286769 -0.023291028
8         -0.119532644 -0.079286769
9         -0.164526788 -0.119532644
10        -0.201149458 -0.164526788
11        -0.246334130 -0.201149458
12        -0.546995693 -0.246334130
13        -0.563431030 -0.546995693
14        -0.375620493 -0.563431030
15        -0.284997822 -0.375620493
16        -0.163126615 -0.284997822
17        -0.080444339 -0.163126615
18        -0.074757272 -0.080444339
19        -0.128565679 -0.074757272
20        -0.068502880 -0.128565679
21         0.104624316 -0.068502880
22         0.118624316  0.104624316
23         0.124376313  0.118624316
24        -0.115039908  0.124376313
25        -0.118979238 -0.115039908
26        -0.067416705 -0.118979238
27         0.066957963 -0.067416705
28         0.173826508  0.066957963
29         0.197450776  0.173826508
30         0.190013841  0.197450776
31         0.187450776  0.190013841
32         0.301574245  0.187450776
33         0.471566792  0.301574245
34         0.563379459  0.471566792
35         0.597252795  0.563379459
36         0.440955252  0.597252795
37         0.491699263  0.440955252
38         0.547322467  0.491699263
39         0.348573132  0.547322467
40         0.229826992  0.348573132
41         0.246575262  0.229826992
42         0.309133004  0.246575262
43         0.289071269  0.309133004
44         0.285696069  0.289071269
45         0.267881273  0.285696069
46         0.220316611  0.267881273
47         0.181071269  0.220316611
48         0.106019068  0.181071269
49         0.171143070  0.106019068
50         0.005201611  0.171143070
51        -0.080109725  0.005201611
52        -0.320101207 -0.080109725
53        -0.408972946 -0.320101207
54        -0.401098545 -0.408972946
55        -0.268669596 -0.401098545
56        -0.399234791 -0.268669596
57        -0.679545594 -0.399234791
58        -0.701170927 -0.679545594
59        -0.656366246 -0.701170927
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/7zteu1258205473.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/8d3kh1258205473.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/91bxp1258205473.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/html/rcomp/tmp/10s4ow1258205473.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/115u8k1258205473.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/12egct1258205473.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/13kzp61258205473.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/14dn291258205473.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/1580x11258205473.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/16vuov1258205473.tab") 
+ }
> 
> system("convert tmp/1jixy1258205473.ps tmp/1jixy1258205473.png")
> system("convert tmp/2avat1258205473.ps tmp/2avat1258205473.png")
> system("convert tmp/3q6ga1258205473.ps tmp/3q6ga1258205473.png")
> system("convert tmp/4xul11258205473.ps tmp/4xul11258205473.png")
> system("convert tmp/5iram1258205473.ps tmp/5iram1258205473.png")
> system("convert tmp/61zhg1258205473.ps tmp/61zhg1258205473.png")
> system("convert tmp/7zteu1258205473.ps tmp/7zteu1258205473.png")
> system("convert tmp/8d3kh1258205473.ps tmp/8d3kh1258205473.png")
> system("convert tmp/91bxp1258205473.ps tmp/91bxp1258205473.png")
> system("convert tmp/10s4ow1258205473.ps tmp/10s4ow1258205473.png")
> 
> 
> proc.time()
   user  system elapsed 
  2.461   1.617   2.907