R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(20604.6,2.05,18714.9,2.03,18492.6,2.04,18183.6,2.03,19435.1,2.01,22686.8,2.01,20396.7,2.01,19233.6,2.01,22751,2.01,19864,2.01,17165.4,2.02,22309.7,2.02,21786.3,2.03,21927.6,2.05,20957.9,2.08,19726,2.07,21315.7,2.06,24771.5,2.05,22592.4,2.05,21942.1,2.05,23973.7,2.05,20815.7,2.05,19931.4,2.06,24436.8,2.06,22838.7,2.07,24465.3,2.07,23007.3,2.3,22720.8,2.31,23045.7,2.31,27198.5,2.53,22401.9,2.58,25122.7,2.59,26100.5,2.73,22904.9,2.82,22040.4,3,25981.5,3.04,26157.1,3.23,25975.4,3.32,22589.8,3.49,25370.4,3.57,25091.1,3.56,28760.9,3.72,24325.9,3.82,25821.7,3.82,27645.7,3.98,26296.9,4.06,24141.5,4.08,27268.1,4.19,29060.3,4.16,28226.4,4.17,23268.5,4.21,26938.2,4.21,27217.5,4.17,27540.5,4.19,29167.6,4.25,26671.5,4.25,30184,4.2,28422.3,4.33,23774.3,4.41,29601,4.56,28523.6,5.18,23622,3.42,21320.3,2.71,20423.6,2.29,21174.9,2,23050.2,1.64,21202.9,1.3,20476.4,1.08,23173.3,1,22468,1,19842.7,1),dim=c(2,71),dimnames=list(c('Y','X'),1:71)) > y <- array(NA,dim=c(2,71),dimnames=list(c('Y','X'),1:71)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'Linear Trend' > par2 = 'Include Monthly Dummies' > par1 = '1' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > library(lmtest) Loading required package: zoo Attaching package: 'zoo' The following object(s) are masked from package:base : as.Date.numeric > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x Y X M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 t 1 20604.6 2.05 1 0 0 0 0 0 0 0 0 0 0 1 2 18714.9 2.03 0 1 0 0 0 0 0 0 0 0 0 2 3 18492.6 2.04 0 0 1 0 0 0 0 0 0 0 0 3 4 18183.6 2.03 0 0 0 1 0 0 0 0 0 0 0 4 5 19435.1 2.01 0 0 0 0 1 0 0 0 0 0 0 5 6 22686.8 2.01 0 0 0 0 0 1 0 0 0 0 0 6 7 20396.7 2.01 0 0 0 0 0 0 1 0 0 0 0 7 8 19233.6 2.01 0 0 0 0 0 0 0 1 0 0 0 8 9 22751.0 2.01 0 0 0 0 0 0 0 0 1 0 0 9 10 19864.0 2.01 0 0 0 0 0 0 0 0 0 1 0 10 11 17165.4 2.02 0 0 0 0 0 0 0 0 0 0 1 11 12 22309.7 2.02 0 0 0 0 0 0 0 0 0 0 0 12 13 21786.3 2.03 1 0 0 0 0 0 0 0 0 0 0 13 14 21927.6 2.05 0 1 0 0 0 0 0 0 0 0 0 14 15 20957.9 2.08 0 0 1 0 0 0 0 0 0 0 0 15 16 19726.0 2.07 0 0 0 1 0 0 0 0 0 0 0 16 17 21315.7 2.06 0 0 0 0 1 0 0 0 0 0 0 17 18 24771.5 2.05 0 0 0 0 0 1 0 0 0 0 0 18 19 22592.4 2.05 0 0 0 0 0 0 1 0 0 0 0 19 20 21942.1 2.05 0 0 0 0 0 0 0 1 0 0 0 20 21 23973.7 2.05 0 0 0 0 0 0 0 0 1 0 0 21 22 20815.7 2.05 0 0 0 0 0 0 0 0 0 1 0 22 23 19931.4 2.06 0 0 0 0 0 0 0 0 0 0 1 23 24 24436.8 2.06 0 0 0 0 0 0 0 0 0 0 0 24 25 22838.7 2.07 1 0 0 0 0 0 0 0 0 0 0 25 26 24465.3 2.07 0 1 0 0 0 0 0 0 0 0 0 26 27 23007.3 2.30 0 0 1 0 0 0 0 0 0 0 0 27 28 22720.8 2.31 0 0 0 1 0 0 0 0 0 0 0 28 29 23045.7 2.31 0 0 0 0 1 0 0 0 0 0 0 29 30 27198.5 2.53 0 0 0 0 0 1 0 0 0 0 0 30 31 22401.9 2.58 0 0 0 0 0 0 1 0 0 0 0 31 32 25122.7 2.59 0 0 0 0 0 0 0 1 0 0 0 32 33 26100.5 2.73 0 0 0 0 0 0 0 0 1 0 0 33 34 22904.9 2.82 0 0 0 0 0 0 0 0 0 1 0 34 35 22040.4 3.00 0 0 0 0 0 0 0 0 0 0 1 35 36 25981.5 3.04 0 0 0 0 0 0 0 0 0 0 0 36 37 26157.1 3.23 1 0 0 0 0 0 0 0 0 0 0 37 38 25975.4 3.32 0 1 0 0 0 0 0 0 0 0 0 38 39 22589.8 3.49 0 0 1 0 0 0 0 0 0 0 0 39 40 25370.4 3.57 0 0 0 1 0 0 0 0 0 0 0 40 41 25091.1 3.56 0 0 0 0 1 0 0 0 0 0 0 41 42 28760.9 3.72 0 0 0 0 0 1 0 0 0 0 0 42 43 24325.9 3.82 0 0 0 0 0 0 1 0 0 0 0 43 44 25821.7 3.82 0 0 0 0 0 0 0 1 0 0 0 44 45 27645.7 3.98 0 0 0 0 0 0 0 0 1 0 0 45 46 26296.9 4.06 0 0 0 0 0 0 0 0 0 1 0 46 47 24141.5 4.08 0 0 0 0 0 0 0 0 0 0 1 47 48 27268.1 4.19 0 0 0 0 0 0 0 0 0 0 0 48 49 29060.3 4.16 1 0 0 0 0 0 0 0 0 0 0 49 50 28226.4 4.17 0 1 0 0 0 0 0 0 0 0 0 50 51 23268.5 4.21 0 0 1 0 0 0 0 0 0 0 0 51 52 26938.2 4.21 0 0 0 1 0 0 0 0 0 0 0 52 53 27217.5 4.17 0 0 0 0 1 0 0 0 0 0 0 53 54 27540.5 4.19 0 0 0 0 0 1 0 0 0 0 0 54 55 29167.6 4.25 0 0 0 0 0 0 1 0 0 0 0 55 56 26671.5 4.25 0 0 0 0 0 0 0 1 0 0 0 56 57 30184.0 4.20 0 0 0 0 0 0 0 0 1 0 0 57 58 28422.3 4.33 0 0 0 0 0 0 0 0 0 1 0 58 59 23774.3 4.41 0 0 0 0 0 0 0 0 0 0 1 59 60 29601.0 4.56 0 0 0 0 0 0 0 0 0 0 0 60 61 28523.6 5.18 1 0 0 0 0 0 0 0 0 0 0 61 62 23622.0 3.42 0 1 0 0 0 0 0 0 0 0 0 62 63 21320.3 2.71 0 0 1 0 0 0 0 0 0 0 0 63 64 20423.6 2.29 0 0 0 1 0 0 0 0 0 0 0 64 65 21174.9 2.00 0 0 0 0 1 0 0 0 0 0 0 65 66 23050.2 1.64 0 0 0 0 0 1 0 0 0 0 0 66 67 21202.9 1.30 0 0 0 0 0 0 1 0 0 0 0 67 68 20476.4 1.08 0 0 0 0 0 0 0 1 0 0 0 68 69 23173.3 1.00 0 0 0 0 0 0 0 0 1 0 0 69 70 22468.0 1.00 0 0 0 0 0 0 0 0 0 1 0 70 71 19842.7 1.00 0 0 0 0 0 0 0 0 0 0 1 71 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) X M1 M2 M3 M4 18289.78 2000.13 -805.03 -1293.75 -3468.54 -2766.42 M5 M6 M7 M8 M9 M10 -2025.77 716.71 -1595.71 -1697.86 636.58 -1675.08 M11 t -4123.36 35.59 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -2421.02 -929.36 23.34 1005.33 2624.84 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 18289.78 781.62 23.400 < 2e-16 *** X 2000.13 170.62 11.723 < 2e-16 *** M1 -805.03 813.59 -0.989 0.326610 M2 -1293.75 814.30 -1.589 0.117638 M3 -3468.54 814.62 -4.258 7.80e-05 *** M4 -2766.42 815.41 -3.393 0.001264 ** M5 -2025.77 816.55 -2.481 0.016081 * M6 716.71 816.78 0.877 0.383908 M7 -1595.71 817.59 -1.952 0.055889 . M8 -1697.86 818.80 -2.074 0.042647 * M9 636.58 818.84 0.777 0.440126 M10 -1675.08 818.52 -2.046 0.045332 * M11 -4123.36 818.31 -5.039 5.04e-06 *** t 35.59 8.63 4.124 0.000122 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1342 on 57 degrees of freedom Multiple R-squared: 0.8506, Adjusted R-squared: 0.8166 F-statistic: 24.97 on 13 and 57 DF, p-value: < 2.2e-16 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 0.1413416955 0.282683391 0.8586583 [2,] 0.0555255594 0.111051119 0.9444744 [3,] 0.0195993872 0.039198774 0.9804006 [4,] 0.0085328018 0.017065604 0.9914672 [5,] 0.0071871236 0.014374247 0.9928129 [6,] 0.0090810165 0.018162033 0.9909190 [7,] 0.0054881347 0.010976269 0.9945119 [8,] 0.0020999608 0.004199922 0.9979000 [9,] 0.0027441867 0.005488373 0.9972558 [10,] 0.0055861006 0.011172201 0.9944139 [11,] 0.0042540694 0.008508139 0.9957459 [12,] 0.0019771601 0.003954320 0.9980228 [13,] 0.0013045794 0.002609159 0.9986954 [14,] 0.0008217035 0.001643407 0.9991783 [15,] 0.0049031093 0.009806219 0.9950969 [16,] 0.0126529024 0.025305805 0.9873471 [17,] 0.0069465302 0.013893060 0.9930535 [18,] 0.0067043933 0.013408787 0.9932956 [19,] 0.0041096452 0.008219290 0.9958904 [20,] 0.0021671976 0.004334395 0.9978328 [21,] 0.0011579154 0.002315831 0.9988421 [22,] 0.0005939170 0.001187834 0.9994061 [23,] 0.0018619850 0.003723970 0.9981380 [24,] 0.0023199036 0.004639807 0.9976801 [25,] 0.0011324670 0.002264934 0.9988675 [26,] 0.0011165868 0.002233174 0.9988834 [27,] 0.0028898747 0.005779749 0.9971101 [28,] 0.0014150950 0.002830190 0.9985849 [29,] 0.0013329371 0.002665874 0.9986671 [30,] 0.0044847237 0.008969447 0.9955153 [31,] 0.0041420562 0.008284112 0.9958579 [32,] 0.0303072947 0.060614589 0.9696927 [33,] 0.0332197331 0.066439466 0.9667803 [34,] 0.0218033341 0.043606668 0.9781967 [35,] 0.2693961954 0.538792391 0.7306038 [36,] 0.1840410402 0.368082080 0.8159590 [37,] 0.1065589651 0.213117930 0.8934410 [38,] 0.8086219097 0.382756181 0.1913781 > postscript(file="/var/www/html/rcomp/tmp/1hup41258476422.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/2ultp1258476422.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/3sx641258476422.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/4avxo1258476422.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/5w6ix1258476422.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 71 Frequency = 1 1 2 3 4 5 6 -1016.00961 -2412.57707 -515.68349 -1542.38992 -1027.12879 -553.49479 7 8 9 10 11 12 -566.76434 -1663.30233 -515.93189 -1126.85858 -1432.76993 -447.42140 13 14 15 16 17 18 -221.37953 333.04769 1442.53860 -507.06782 326.39197 1024.12730 19 20 21 22 23 24 1121.85776 538.11977 199.69020 -682.23648 826.15217 1172.60070 25 26 27 28 29 30 323.94256 2403.67244 2624.83677 1580.62768 1129.28615 2063.99090 31 32 33 34 35 36 -555.78530 2211.57539 539.32721 -560.21144 627.95461 330.09782 37 38 39 40 41 42 895.11575 986.53367 -599.89403 1282.98757 247.44737 819.16010 43 44 45 46 47 48 -1539.02275 23.33927 -842.71157 -75.44889 141.83843 -1110.52767 49 50 51 52 53 54 1511.11952 1110.34807 -1788.36235 1143.62990 726.69368 -1768.37498 55 56 57 58 59 60 2015.54750 -413.99049 828.48659 1082.84262 -1312.47803 55.25055 61 62 63 64 65 66 -1492.78868 -2421.02480 -1163.43550 -1957.78741 -1402.69039 -1585.40853 67 68 69 70 71 -475.83287 -695.74161 -208.86054 1361.91278 1149.30276 > postscript(file="/var/www/html/rcomp/tmp/6ju8h1258476422.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 71 Frequency = 1 lag(myerror, k = 1) myerror 0 -1016.00961 NA 1 -2412.57707 -1016.00961 2 -515.68349 -2412.57707 3 -1542.38992 -515.68349 4 -1027.12879 -1542.38992 5 -553.49479 -1027.12879 6 -566.76434 -553.49479 7 -1663.30233 -566.76434 8 -515.93189 -1663.30233 9 -1126.85858 -515.93189 10 -1432.76993 -1126.85858 11 -447.42140 -1432.76993 12 -221.37953 -447.42140 13 333.04769 -221.37953 14 1442.53860 333.04769 15 -507.06782 1442.53860 16 326.39197 -507.06782 17 1024.12730 326.39197 18 1121.85776 1024.12730 19 538.11977 1121.85776 20 199.69020 538.11977 21 -682.23648 199.69020 22 826.15217 -682.23648 23 1172.60070 826.15217 24 323.94256 1172.60070 25 2403.67244 323.94256 26 2624.83677 2403.67244 27 1580.62768 2624.83677 28 1129.28615 1580.62768 29 2063.99090 1129.28615 30 -555.78530 2063.99090 31 2211.57539 -555.78530 32 539.32721 2211.57539 33 -560.21144 539.32721 34 627.95461 -560.21144 35 330.09782 627.95461 36 895.11575 330.09782 37 986.53367 895.11575 38 -599.89403 986.53367 39 1282.98757 -599.89403 40 247.44737 1282.98757 41 819.16010 247.44737 42 -1539.02275 819.16010 43 23.33927 -1539.02275 44 -842.71157 23.33927 45 -75.44889 -842.71157 46 141.83843 -75.44889 47 -1110.52767 141.83843 48 1511.11952 -1110.52767 49 1110.34807 1511.11952 50 -1788.36235 1110.34807 51 1143.62990 -1788.36235 52 726.69368 1143.62990 53 -1768.37498 726.69368 54 2015.54750 -1768.37498 55 -413.99049 2015.54750 56 828.48659 -413.99049 57 1082.84262 828.48659 58 -1312.47803 1082.84262 59 55.25055 -1312.47803 60 -1492.78868 55.25055 61 -2421.02480 -1492.78868 62 -1163.43550 -2421.02480 63 -1957.78741 -1163.43550 64 -1402.69039 -1957.78741 65 -1585.40853 -1402.69039 66 -475.83287 -1585.40853 67 -695.74161 -475.83287 68 -208.86054 -695.74161 69 1361.91278 -208.86054 70 1149.30276 1361.91278 71 NA 1149.30276 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] -2412.57707 -1016.00961 [2,] -515.68349 -2412.57707 [3,] -1542.38992 -515.68349 [4,] -1027.12879 -1542.38992 [5,] -553.49479 -1027.12879 [6,] -566.76434 -553.49479 [7,] -1663.30233 -566.76434 [8,] -515.93189 -1663.30233 [9,] -1126.85858 -515.93189 [10,] -1432.76993 -1126.85858 [11,] -447.42140 -1432.76993 [12,] -221.37953 -447.42140 [13,] 333.04769 -221.37953 [14,] 1442.53860 333.04769 [15,] -507.06782 1442.53860 [16,] 326.39197 -507.06782 [17,] 1024.12730 326.39197 [18,] 1121.85776 1024.12730 [19,] 538.11977 1121.85776 [20,] 199.69020 538.11977 [21,] -682.23648 199.69020 [22,] 826.15217 -682.23648 [23,] 1172.60070 826.15217 [24,] 323.94256 1172.60070 [25,] 2403.67244 323.94256 [26,] 2624.83677 2403.67244 [27,] 1580.62768 2624.83677 [28,] 1129.28615 1580.62768 [29,] 2063.99090 1129.28615 [30,] -555.78530 2063.99090 [31,] 2211.57539 -555.78530 [32,] 539.32721 2211.57539 [33,] -560.21144 539.32721 [34,] 627.95461 -560.21144 [35,] 330.09782 627.95461 [36,] 895.11575 330.09782 [37,] 986.53367 895.11575 [38,] -599.89403 986.53367 [39,] 1282.98757 -599.89403 [40,] 247.44737 1282.98757 [41,] 819.16010 247.44737 [42,] -1539.02275 819.16010 [43,] 23.33927 -1539.02275 [44,] -842.71157 23.33927 [45,] -75.44889 -842.71157 [46,] 141.83843 -75.44889 [47,] -1110.52767 141.83843 [48,] 1511.11952 -1110.52767 [49,] 1110.34807 1511.11952 [50,] -1788.36235 1110.34807 [51,] 1143.62990 -1788.36235 [52,] 726.69368 1143.62990 [53,] -1768.37498 726.69368 [54,] 2015.54750 -1768.37498 [55,] -413.99049 2015.54750 [56,] 828.48659 -413.99049 [57,] 1082.84262 828.48659 [58,] -1312.47803 1082.84262 [59,] 55.25055 -1312.47803 [60,] -1492.78868 55.25055 [61,] -2421.02480 -1492.78868 [62,] -1163.43550 -2421.02480 [63,] -1957.78741 -1163.43550 [64,] -1402.69039 -1957.78741 [65,] -1585.40853 -1402.69039 [66,] -475.83287 -1585.40853 [67,] -695.74161 -475.83287 [68,] -208.86054 -695.74161 [69,] 1361.91278 -208.86054 [70,] 1149.30276 1361.91278 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 -2412.57707 -1016.00961 2 -515.68349 -2412.57707 3 -1542.38992 -515.68349 4 -1027.12879 -1542.38992 5 -553.49479 -1027.12879 6 -566.76434 -553.49479 7 -1663.30233 -566.76434 8 -515.93189 -1663.30233 9 -1126.85858 -515.93189 10 -1432.76993 -1126.85858 11 -447.42140 -1432.76993 12 -221.37953 -447.42140 13 333.04769 -221.37953 14 1442.53860 333.04769 15 -507.06782 1442.53860 16 326.39197 -507.06782 17 1024.12730 326.39197 18 1121.85776 1024.12730 19 538.11977 1121.85776 20 199.69020 538.11977 21 -682.23648 199.69020 22 826.15217 -682.23648 23 1172.60070 826.15217 24 323.94256 1172.60070 25 2403.67244 323.94256 26 2624.83677 2403.67244 27 1580.62768 2624.83677 28 1129.28615 1580.62768 29 2063.99090 1129.28615 30 -555.78530 2063.99090 31 2211.57539 -555.78530 32 539.32721 2211.57539 33 -560.21144 539.32721 34 627.95461 -560.21144 35 330.09782 627.95461 36 895.11575 330.09782 37 986.53367 895.11575 38 -599.89403 986.53367 39 1282.98757 -599.89403 40 247.44737 1282.98757 41 819.16010 247.44737 42 -1539.02275 819.16010 43 23.33927 -1539.02275 44 -842.71157 23.33927 45 -75.44889 -842.71157 46 141.83843 -75.44889 47 -1110.52767 141.83843 48 1511.11952 -1110.52767 49 1110.34807 1511.11952 50 -1788.36235 1110.34807 51 1143.62990 -1788.36235 52 726.69368 1143.62990 53 -1768.37498 726.69368 54 2015.54750 -1768.37498 55 -413.99049 2015.54750 56 828.48659 -413.99049 57 1082.84262 828.48659 58 -1312.47803 1082.84262 59 55.25055 -1312.47803 60 -1492.78868 55.25055 61 -2421.02480 -1492.78868 62 -1163.43550 -2421.02480 63 -1957.78741 -1163.43550 64 -1402.69039 -1957.78741 65 -1585.40853 -1402.69039 66 -475.83287 -1585.40853 67 -695.74161 -475.83287 68 -208.86054 -695.74161 69 1361.91278 -208.86054 70 1149.30276 1361.91278 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/7mhra1258476422.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/8dsdc1258476422.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/940ye1258476422.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/www/html/rcomp/tmp/10x6kl1258476422.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/11y4pq1258476422.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/12k4j01258476422.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/13ubdt1258476423.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/1421yg1258476423.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/158ciz1258476423.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/16y4lg1258476423.tab") + } > > system("convert tmp/1hup41258476422.ps tmp/1hup41258476422.png") > system("convert tmp/2ultp1258476422.ps tmp/2ultp1258476422.png") > system("convert tmp/3sx641258476422.ps tmp/3sx641258476422.png") > system("convert tmp/4avxo1258476422.ps tmp/4avxo1258476422.png") > system("convert tmp/5w6ix1258476422.ps tmp/5w6ix1258476422.png") > system("convert tmp/6ju8h1258476422.ps tmp/6ju8h1258476422.png") > system("convert tmp/7mhra1258476422.ps tmp/7mhra1258476422.png") > system("convert tmp/8dsdc1258476422.ps tmp/8dsdc1258476422.png") > system("convert tmp/940ye1258476422.ps tmp/940ye1258476422.png") > system("convert tmp/10x6kl1258476422.ps tmp/10x6kl1258476422.png") > > > proc.time() user system elapsed 2.590 1.598 3.506