R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(7.8,2.61,7.8,8.3,8,2.26,7.8,7.8,8.6,2.41,8,7.8,8.9,2.26,8.6,8,8.9,2.03,8.9,8.6,8.6,2.86,8.9,8.9,8.3,2.55,8.6,8.9,8.3,2.27,8.3,8.6,8.3,2.26,8.3,8.3,8.4,2.57,8.3,8.3,8.5,3.07,8.4,8.3,8.4,2.76,8.5,8.4,8.6,2.51,8.4,8.5,8.5,2.87,8.6,8.4,8.5,3.14,8.5,8.6,8.5,3.11,8.5,8.5,8.5,3.16,8.5,8.5,8.5,2.47,8.5,8.5,8.5,2.57,8.5,8.5,8.5,2.89,8.5,8.5,8.5,2.63,8.5,8.5,8.5,2.38,8.5,8.5,8.5,1.69,8.5,8.5,8.5,1.96,8.5,8.5,8.6,2.19,8.5,8.5,8.4,1.87,8.6,8.5,8.1,1.6,8.4,8.6,8,1.63,8.1,8.4,8,1.22,8,8.1,8,1.21,8,8,8,1.49,8,8,7.9,1.64,8,8,7.8,1.66,7.9,8,7.8,1.77,7.8,7.9,7.9,1.82,7.8,7.8,8.1,1.78,7.9,7.8,8,1.28,8.1,7.9,7.6,1.29,8,8.1,7.3,1.37,7.6,8,7,1.12,7.3,7.6,6.8,1.51,7,7.3,7,2.24,6.8,7,7.1,2.94,7,6.8,7.2,3.09,7.1,7,7.1,3.46,7.2,7.1,6.9,3.64,7.1,7.2,6.7,4.39,6.9,7.1,6.7,4.15,6.7,6.9,6.6,5.21,6.7,6.7,6.9,5.8,6.6,6.7,7.3,5.91,6.9,6.6,7.5,5.39,7.3,6.9,7.3,5.46,7.5,7.3,7.1,4.72,7.3,7.5,6.9,3.14,7.1,7.3,7.1,2.63,6.9,7.1),dim=c(4,56),dimnames=list(c('Y','X','Y1','Y2'),1:56)) > y <- array(NA,dim=c(4,56),dimnames=list(c('Y','X','Y1','Y2'),1:56)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'Linear Trend' > par2 = 'Include Monthly Dummies' > par1 = '1' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > library(lmtest) Loading required package: zoo Attaching package: 'zoo' The following object(s) are masked from package:base : as.Date.numeric > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x Y X Y1 Y2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 t 1 7.8 2.61 7.8 8.3 1 0 0 0 0 0 0 0 0 0 0 1 2 8.0 2.26 7.8 7.8 0 1 0 0 0 0 0 0 0 0 0 2 3 8.6 2.41 8.0 7.8 0 0 1 0 0 0 0 0 0 0 0 3 4 8.9 2.26 8.6 8.0 0 0 0 1 0 0 0 0 0 0 0 4 5 8.9 2.03 8.9 8.6 0 0 0 0 1 0 0 0 0 0 0 5 6 8.6 2.86 8.9 8.9 0 0 0 0 0 1 0 0 0 0 0 6 7 8.3 2.55 8.6 8.9 0 0 0 0 0 0 1 0 0 0 0 7 8 8.3 2.27 8.3 8.6 0 0 0 0 0 0 0 1 0 0 0 8 9 8.3 2.26 8.3 8.3 0 0 0 0 0 0 0 0 1 0 0 9 10 8.4 2.57 8.3 8.3 0 0 0 0 0 0 0 0 0 1 0 10 11 8.5 3.07 8.4 8.3 0 0 0 0 0 0 0 0 0 0 1 11 12 8.4 2.76 8.5 8.4 0 0 0 0 0 0 0 0 0 0 0 12 13 8.6 2.51 8.4 8.5 1 0 0 0 0 0 0 0 0 0 0 13 14 8.5 2.87 8.6 8.4 0 1 0 0 0 0 0 0 0 0 0 14 15 8.5 3.14 8.5 8.6 0 0 1 0 0 0 0 0 0 0 0 15 16 8.5 3.11 8.5 8.5 0 0 0 1 0 0 0 0 0 0 0 16 17 8.5 3.16 8.5 8.5 0 0 0 0 1 0 0 0 0 0 0 17 18 8.5 2.47 8.5 8.5 0 0 0 0 0 1 0 0 0 0 0 18 19 8.5 2.57 8.5 8.5 0 0 0 0 0 0 1 0 0 0 0 19 20 8.5 2.89 8.5 8.5 0 0 0 0 0 0 0 1 0 0 0 20 21 8.5 2.63 8.5 8.5 0 0 0 0 0 0 0 0 1 0 0 21 22 8.5 2.38 8.5 8.5 0 0 0 0 0 0 0 0 0 1 0 22 23 8.5 1.69 8.5 8.5 0 0 0 0 0 0 0 0 0 0 1 23 24 8.5 1.96 8.5 8.5 0 0 0 0 0 0 0 0 0 0 0 24 25 8.6 2.19 8.5 8.5 1 0 0 0 0 0 0 0 0 0 0 25 26 8.4 1.87 8.6 8.5 0 1 0 0 0 0 0 0 0 0 0 26 27 8.1 1.60 8.4 8.6 0 0 1 0 0 0 0 0 0 0 0 27 28 8.0 1.63 8.1 8.4 0 0 0 1 0 0 0 0 0 0 0 28 29 8.0 1.22 8.0 8.1 0 0 0 0 1 0 0 0 0 0 0 29 30 8.0 1.21 8.0 8.0 0 0 0 0 0 1 0 0 0 0 0 30 31 8.0 1.49 8.0 8.0 0 0 0 0 0 0 1 0 0 0 0 31 32 7.9 1.64 8.0 8.0 0 0 0 0 0 0 0 1 0 0 0 32 33 7.8 1.66 7.9 8.0 0 0 0 0 0 0 0 0 1 0 0 33 34 7.8 1.77 7.8 7.9 0 0 0 0 0 0 0 0 0 1 0 34 35 7.9 1.82 7.8 7.8 0 0 0 0 0 0 0 0 0 0 1 35 36 8.1 1.78 7.9 7.8 0 0 0 0 0 0 0 0 0 0 0 36 37 8.0 1.28 8.1 7.9 1 0 0 0 0 0 0 0 0 0 0 37 38 7.6 1.29 8.0 8.1 0 1 0 0 0 0 0 0 0 0 0 38 39 7.3 1.37 7.6 8.0 0 0 1 0 0 0 0 0 0 0 0 39 40 7.0 1.12 7.3 7.6 0 0 0 1 0 0 0 0 0 0 0 40 41 6.8 1.51 7.0 7.3 0 0 0 0 1 0 0 0 0 0 0 41 42 7.0 2.24 6.8 7.0 0 0 0 0 0 1 0 0 0 0 0 42 43 7.1 2.94 7.0 6.8 0 0 0 0 0 0 1 0 0 0 0 43 44 7.2 3.09 7.1 7.0 0 0 0 0 0 0 0 1 0 0 0 44 45 7.1 3.46 7.2 7.1 0 0 0 0 0 0 0 0 1 0 0 45 46 6.9 3.64 7.1 7.2 0 0 0 0 0 0 0 0 0 1 0 46 47 6.7 4.39 6.9 7.1 0 0 0 0 0 0 0 0 0 0 1 47 48 6.7 4.15 6.7 6.9 0 0 0 0 0 0 0 0 0 0 0 48 49 6.6 5.21 6.7 6.7 1 0 0 0 0 0 0 0 0 0 0 49 50 6.9 5.80 6.6 6.7 0 1 0 0 0 0 0 0 0 0 0 50 51 7.3 5.91 6.9 6.6 0 0 1 0 0 0 0 0 0 0 0 51 52 7.5 5.39 7.3 6.9 0 0 0 1 0 0 0 0 0 0 0 52 53 7.3 5.46 7.5 7.3 0 0 0 0 1 0 0 0 0 0 0 53 54 7.1 4.72 7.3 7.5 0 0 0 0 0 1 0 0 0 0 0 54 55 6.9 3.14 7.1 7.3 0 0 0 0 0 0 1 0 0 0 0 55 56 7.1 2.63 6.9 7.1 0 0 0 0 0 0 0 1 0 0 0 56 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) X Y1 Y2 M1 M2 2.315294 -0.004043 1.322528 -0.575638 -0.005215 -0.108150 M3 M4 M5 M6 M7 M8 0.045871 -0.054369 -0.105541 -0.038797 -0.076820 0.043639 M9 M10 M11 t -0.084660 -0.033848 -0.019618 -0.009332 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -0.2562646 -0.1049265 -0.0009522 0.0888505 0.3109988 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2.315294 0.556634 4.159 0.000164 *** X -0.004043 0.021080 -0.192 0.848864 Y1 1.322528 0.114008 11.600 2.26e-14 *** Y2 -0.575638 0.118888 -4.842 1.96e-05 *** M1 -0.005215 0.102256 -0.051 0.959578 M2 -0.108150 0.101638 -1.064 0.293677 M3 0.045871 0.101752 0.451 0.654562 M4 -0.054369 0.101653 -0.535 0.595715 M5 -0.105541 0.101300 -1.042 0.303728 M6 -0.038797 0.101720 -0.381 0.704917 M7 -0.076820 0.101453 -0.757 0.453372 M8 0.043639 0.101675 0.429 0.670081 M9 -0.084660 0.106811 -0.793 0.432678 M10 -0.033848 0.106908 -0.317 0.753189 M11 -0.019618 0.106807 -0.184 0.855197 t -0.009332 0.002232 -4.181 0.000154 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.1509 on 40 degrees of freedom Multiple R-squared: 0.9627, Adjusted R-squared: 0.9488 F-statistic: 68.9 on 15 and 40 DF, p-value: < 2.2e-16 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 0.172031676 0.344063351 0.8279683 [2,] 0.107289737 0.214579475 0.8927103 [3,] 0.052292797 0.104585595 0.9477072 [4,] 0.029488625 0.058977250 0.9705114 [5,] 0.017073553 0.034147106 0.9829264 [6,] 0.008748450 0.017496900 0.9912515 [7,] 0.007434408 0.014868816 0.9925656 [8,] 0.004817401 0.009634801 0.9951826 [9,] 0.040937154 0.081874308 0.9590628 [10,] 0.025538926 0.051077851 0.9744611 [11,] 0.027977359 0.055954719 0.9720226 [12,] 0.018992740 0.037985480 0.9810073 [13,] 0.017220817 0.034441633 0.9827792 [14,] 0.027867761 0.055735522 0.9721322 [15,] 0.028193035 0.056386070 0.9718070 [16,] 0.050235064 0.100470128 0.9497649 [17,] 0.070437047 0.140874094 0.9295630 [18,] 0.183441874 0.366883748 0.8165581 [19,] 0.792836601 0.414326797 0.2071634 > postscript(file="/var/www/html/rcomp/tmp/1tkvz1258556037.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/2woa31258556037.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/3x8kz1258556037.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/444sf1258556037.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/5knr01258556037.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 56 Frequency = 1 1 2 3 4 5 -0.0281196197 -0.0050865954 0.1863254165 -0.0830987057 -0.0748997379 6 7 8 9 10 -0.2562645533 -0.1134051461 -0.0015966570 -0.0366974078 0.0230757985 11 12 13 14 15 -0.0120533158 -0.1982813476 0.2050717307 -0.1032750538 0.0005081877 16 17 18 19 20 0.0523948310 0.1131016515 0.0528997721 0.1006584329 -0.0091742514 21 22 23 24 25 0.1274055512 0.0849145508 0.0772268202 0.0680328961 0.1835101133 26 27 28 29 30 -0.0377694554 -0.1614805197 0.1298433997 0.1482517992 0.0332355271 31 32 33 34 35 0.0817219686 -0.1287980642 0.0411666648 0.0748202623 0.1125607325 36 37 38 39 40 0.1698605852 -0.1245556123 -0.1648676969 -0.1377855592 -0.1627213164 41 42 43 44 45 -0.0765726898 0.1607810984 -0.0686675244 -0.0963128070 -0.1318748082 46 47 48 49 50 -0.1828106116 -0.1777342369 -0.0396121336 -0.2359066119 0.3109988015 51 52 53 54 55 0.1124324746 0.0635817914 -0.1098810231 0.0093481557 -0.0003077309 56 0.2358817797 > postscript(file="/var/www/html/rcomp/tmp/6w46g1258556037.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 56 Frequency = 1 lag(myerror, k = 1) myerror 0 -0.0281196197 NA 1 -0.0050865954 -0.0281196197 2 0.1863254165 -0.0050865954 3 -0.0830987057 0.1863254165 4 -0.0748997379 -0.0830987057 5 -0.2562645533 -0.0748997379 6 -0.1134051461 -0.2562645533 7 -0.0015966570 -0.1134051461 8 -0.0366974078 -0.0015966570 9 0.0230757985 -0.0366974078 10 -0.0120533158 0.0230757985 11 -0.1982813476 -0.0120533158 12 0.2050717307 -0.1982813476 13 -0.1032750538 0.2050717307 14 0.0005081877 -0.1032750538 15 0.0523948310 0.0005081877 16 0.1131016515 0.0523948310 17 0.0528997721 0.1131016515 18 0.1006584329 0.0528997721 19 -0.0091742514 0.1006584329 20 0.1274055512 -0.0091742514 21 0.0849145508 0.1274055512 22 0.0772268202 0.0849145508 23 0.0680328961 0.0772268202 24 0.1835101133 0.0680328961 25 -0.0377694554 0.1835101133 26 -0.1614805197 -0.0377694554 27 0.1298433997 -0.1614805197 28 0.1482517992 0.1298433997 29 0.0332355271 0.1482517992 30 0.0817219686 0.0332355271 31 -0.1287980642 0.0817219686 32 0.0411666648 -0.1287980642 33 0.0748202623 0.0411666648 34 0.1125607325 0.0748202623 35 0.1698605852 0.1125607325 36 -0.1245556123 0.1698605852 37 -0.1648676969 -0.1245556123 38 -0.1377855592 -0.1648676969 39 -0.1627213164 -0.1377855592 40 -0.0765726898 -0.1627213164 41 0.1607810984 -0.0765726898 42 -0.0686675244 0.1607810984 43 -0.0963128070 -0.0686675244 44 -0.1318748082 -0.0963128070 45 -0.1828106116 -0.1318748082 46 -0.1777342369 -0.1828106116 47 -0.0396121336 -0.1777342369 48 -0.2359066119 -0.0396121336 49 0.3109988015 -0.2359066119 50 0.1124324746 0.3109988015 51 0.0635817914 0.1124324746 52 -0.1098810231 0.0635817914 53 0.0093481557 -0.1098810231 54 -0.0003077309 0.0093481557 55 0.2358817797 -0.0003077309 56 NA 0.2358817797 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] -0.0050865954 -0.0281196197 [2,] 0.1863254165 -0.0050865954 [3,] -0.0830987057 0.1863254165 [4,] -0.0748997379 -0.0830987057 [5,] -0.2562645533 -0.0748997379 [6,] -0.1134051461 -0.2562645533 [7,] -0.0015966570 -0.1134051461 [8,] -0.0366974078 -0.0015966570 [9,] 0.0230757985 -0.0366974078 [10,] -0.0120533158 0.0230757985 [11,] -0.1982813476 -0.0120533158 [12,] 0.2050717307 -0.1982813476 [13,] -0.1032750538 0.2050717307 [14,] 0.0005081877 -0.1032750538 [15,] 0.0523948310 0.0005081877 [16,] 0.1131016515 0.0523948310 [17,] 0.0528997721 0.1131016515 [18,] 0.1006584329 0.0528997721 [19,] -0.0091742514 0.1006584329 [20,] 0.1274055512 -0.0091742514 [21,] 0.0849145508 0.1274055512 [22,] 0.0772268202 0.0849145508 [23,] 0.0680328961 0.0772268202 [24,] 0.1835101133 0.0680328961 [25,] -0.0377694554 0.1835101133 [26,] -0.1614805197 -0.0377694554 [27,] 0.1298433997 -0.1614805197 [28,] 0.1482517992 0.1298433997 [29,] 0.0332355271 0.1482517992 [30,] 0.0817219686 0.0332355271 [31,] -0.1287980642 0.0817219686 [32,] 0.0411666648 -0.1287980642 [33,] 0.0748202623 0.0411666648 [34,] 0.1125607325 0.0748202623 [35,] 0.1698605852 0.1125607325 [36,] -0.1245556123 0.1698605852 [37,] -0.1648676969 -0.1245556123 [38,] -0.1377855592 -0.1648676969 [39,] -0.1627213164 -0.1377855592 [40,] -0.0765726898 -0.1627213164 [41,] 0.1607810984 -0.0765726898 [42,] -0.0686675244 0.1607810984 [43,] -0.0963128070 -0.0686675244 [44,] -0.1318748082 -0.0963128070 [45,] -0.1828106116 -0.1318748082 [46,] -0.1777342369 -0.1828106116 [47,] -0.0396121336 -0.1777342369 [48,] -0.2359066119 -0.0396121336 [49,] 0.3109988015 -0.2359066119 [50,] 0.1124324746 0.3109988015 [51,] 0.0635817914 0.1124324746 [52,] -0.1098810231 0.0635817914 [53,] 0.0093481557 -0.1098810231 [54,] -0.0003077309 0.0093481557 [55,] 0.2358817797 -0.0003077309 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 -0.0050865954 -0.0281196197 2 0.1863254165 -0.0050865954 3 -0.0830987057 0.1863254165 4 -0.0748997379 -0.0830987057 5 -0.2562645533 -0.0748997379 6 -0.1134051461 -0.2562645533 7 -0.0015966570 -0.1134051461 8 -0.0366974078 -0.0015966570 9 0.0230757985 -0.0366974078 10 -0.0120533158 0.0230757985 11 -0.1982813476 -0.0120533158 12 0.2050717307 -0.1982813476 13 -0.1032750538 0.2050717307 14 0.0005081877 -0.1032750538 15 0.0523948310 0.0005081877 16 0.1131016515 0.0523948310 17 0.0528997721 0.1131016515 18 0.1006584329 0.0528997721 19 -0.0091742514 0.1006584329 20 0.1274055512 -0.0091742514 21 0.0849145508 0.1274055512 22 0.0772268202 0.0849145508 23 0.0680328961 0.0772268202 24 0.1835101133 0.0680328961 25 -0.0377694554 0.1835101133 26 -0.1614805197 -0.0377694554 27 0.1298433997 -0.1614805197 28 0.1482517992 0.1298433997 29 0.0332355271 0.1482517992 30 0.0817219686 0.0332355271 31 -0.1287980642 0.0817219686 32 0.0411666648 -0.1287980642 33 0.0748202623 0.0411666648 34 0.1125607325 0.0748202623 35 0.1698605852 0.1125607325 36 -0.1245556123 0.1698605852 37 -0.1648676969 -0.1245556123 38 -0.1377855592 -0.1648676969 39 -0.1627213164 -0.1377855592 40 -0.0765726898 -0.1627213164 41 0.1607810984 -0.0765726898 42 -0.0686675244 0.1607810984 43 -0.0963128070 -0.0686675244 44 -0.1318748082 -0.0963128070 45 -0.1828106116 -0.1318748082 46 -0.1777342369 -0.1828106116 47 -0.0396121336 -0.1777342369 48 -0.2359066119 -0.0396121336 49 0.3109988015 -0.2359066119 50 0.1124324746 0.3109988015 51 0.0635817914 0.1124324746 52 -0.1098810231 0.0635817914 53 0.0093481557 -0.1098810231 54 -0.0003077309 0.0093481557 55 0.2358817797 -0.0003077309 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/70xor1258556037.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/83axy1258556037.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/9056o1258556037.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/www/html/rcomp/tmp/106gyh1258556037.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/11oxdt1258556037.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/121o551258556037.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/13hijv1258556037.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/14u6951258556037.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/152uhn1258556037.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/16m2n31258556037.tab") + } > > system("convert tmp/1tkvz1258556037.ps tmp/1tkvz1258556037.png") > system("convert tmp/2woa31258556037.ps tmp/2woa31258556037.png") > system("convert tmp/3x8kz1258556037.ps tmp/3x8kz1258556037.png") > system("convert tmp/444sf1258556037.ps tmp/444sf1258556037.png") > system("convert tmp/5knr01258556037.ps tmp/5knr01258556037.png") > system("convert tmp/6w46g1258556037.ps tmp/6w46g1258556037.png") > system("convert tmp/70xor1258556037.ps tmp/70xor1258556037.png") > system("convert tmp/83axy1258556037.ps tmp/83axy1258556037.png") > system("convert tmp/9056o1258556037.ps tmp/9056o1258556037.png") > system("convert tmp/106gyh1258556037.ps tmp/106gyh1258556037.png") > > > proc.time() user system elapsed 2.367 1.604 3.831