Home » date » 2009 » Nov » 19 »

*The author of this computation has been verified*
R Software Module: /rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Thu, 19 Nov 2009 11:55:57 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2009/Nov/19/t1258657074i9urw99ge7hmcvd.htm/, Retrieved Thu, 19 Nov 2009 19:58:06 +0100
 
BibTeX entries for LaTeX users:
@Manual{KEY,
    author = {{YOUR NAME}},
    publisher = {Office for Research Development and Education},
    title = {Statistical Computations at FreeStatistics.org, URL http://www.freestatistics.org/blog/date/2009/Nov/19/t1258657074i9urw99ge7hmcvd.htm/},
    year = {2009},
}
@Manual{R,
    title = {R: A Language and Environment for Statistical Computing},
    author = {{R Development Core Team}},
    organization = {R Foundation for Statistical Computing},
    address = {Vienna, Austria},
    year = {2009},
    note = {{ISBN} 3-900051-07-0},
    url = {http://www.R-project.org},
}
 
Original text written by user:
 
IsPrivate?
No (this computation is public)
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
611 0 594 0 595 0 591 0 589 0 584 0 573 0 567 0 569 0 621 0 629 0 628 0 612 0 595 0 597 0 593 0 590 0 580 0 574 0 573 0 573 0 620 0 626 0 620 0 588 0 566 0 557 0 561 0 549 0 532 0 526 0 511 0 499 0 555 0 565 0 542 0 527 0 510 0 514 0 517 0 508 0 493 0 490 0 469 0 478 0 528 0 534 0 518 1 506 1 502 1 516 1 528 1 533 1 536 1 537 1 524 1 536 1 587 1 597 1 581 1
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 588.264 -26.1600000000000X[t] -14.2319999999999M1[t] -29.632M2[t] -27.232M3[t] -25.0320000000000M4[t] -29.232M5[t] -38.032M6[t] -43.032M7[t] -54.232M8[t] -52.032M9[t] -0.831999999999988M10[t] + 7.16800000000001M11[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)588.26418.5625331.690900
X-26.160000000000012.630202-2.07120.0438530.021926
M1-14.231999999999925.386392-0.56060.5777230.288861
M2-29.63225.386392-1.16720.2490020.124501
M3-27.23225.386392-1.07270.2888830.144441
M4-25.032000000000025.386392-0.9860.3291630.164581
M5-29.23225.386392-1.15150.2553580.127679
M6-38.03225.386392-1.49810.1407870.070394
M7-43.03225.386392-1.69510.0966760.048338
M8-54.23225.386392-2.13630.0378960.018948
M9-52.03225.386392-2.04960.0460070.023003
M10-0.83199999999998825.386392-0.03280.9739940.486997
M117.1680000000000125.3863920.28240.778910.389455


Multiple Linear Regression - Regression Statistics
Multiple R0.521709767358670
R-squared0.272181081357437
Adjusted R-squared0.0863549744699744
F-TEST (value)1.46470851656098
F-TEST (DF numerator)12
F-TEST (DF denominator)47
p-value0.171785357661580
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation39.9402063728567
Sum Squared Residuals74975.344


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
1611574.03236.9680000000002
2594558.63235.368
3595561.03233.968
4591563.23227.768
5589559.03229.9680000000000
6584550.23233.768
7573545.23227.768
8567534.03232.9680000000001
9569536.23232.768
10621587.43233.568
11629595.43233.568
12628588.26439.736
13612574.03237.9680000000000
14595558.63236.3680
15597561.03235.968
16593563.23229.768
17590559.03230.968
18580550.23229.768
19574545.23228.768
20573534.03238.968
21573536.23236.768
22620587.43232.568
23626595.43230.568
24620588.26431.736
25588574.03213.9679999999999
26566558.6327.36799999999997
27557561.032-4.03199999999999
28561563.232-2.23200000000002
29549559.032-10.032
30532550.232-18.232
31526545.232-19.232
32511534.032-23.0320000000000
33499536.232-37.232
34555587.432-32.432
35565595.432-30.432
36542588.264-46.264
37527574.032-47.0320000000001
38510558.632-48.6320000000000
39514561.032-47.032
40517563.232-46.232
41508559.032-51.032
42493550.232-57.232
43490545.232-55.232
44469534.032-65.032
45478536.232-58.232
46528587.432-59.432
47534595.432-61.432
48518562.104-44.104
49506547.872-41.8720000000001
50502532.472-30.472
51516534.872-18.8720000000000
52528537.072-9.0720
53533532.8720.128000000000013
54536524.07211.928
55537519.07217.9280000000000
56524507.87216.128
57536510.07225.928
58587561.27225.728
59597569.27227.728
60581562.10418.8960000000000


Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
165.49470362031783e-050.0001098940724063570.999945052963797
172.00506099788873e-064.01012199577746e-060.999997994939002
185.68416998379384e-071.13683399675877e-060.999999431583002
192.85295091729473e-085.70590183458946e-080.99999997147049
202.68181243090685e-085.3636248618137e-080.999999973181876
215.39219011652879e-091.07843802330576e-080.99999999460781
225.36949944686265e-101.07389988937253e-090.99999999946305
239.13524024705453e-111.82704804941091e-100.999999999908648
243.20922885527082e-106.41845771054165e-100.999999999679077
252.670198908114e-065.340397816228e-060.999997329801092
260.000195528400186030.000391056800372060.999804471599814
270.006275775103616030.01255155020723210.993724224896384
280.02244809956059310.04489619912118630.977551900439407
290.08194732632743140.1638946526548630.918052673672569
300.2190422943132720.4380845886265430.780957705686728
310.3371617023660730.6743234047321460.662838297633927
320.5224010872109450.9551978255781110.477598912789055
330.6709843794544510.6580312410910980.329015620545549
340.7264355859142620.5471288281714760.273564414085738
350.7464334720546580.5071330558906830.253566527945342
360.8098948341071540.3802103317856930.190105165892846
370.907201870937650.1855962581247000.0927981290623502
380.9460981637173860.1078036725652290.0539018362826144
390.96126379975540.0774724004891990.0387362002445995
400.966524484099560.06695103180088160.0334755159004408
410.9593650602456570.0812698795086860.040634939754343
420.9296280704345170.1407438591309670.0703719295654834
430.8706093394846660.2587813210306690.129390660515334
440.7660565574564330.4678868850871330.233943442543567


Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level110.379310344827586NOK
5% type I error level130.448275862068966NOK
10% type I error level160.551724137931034NOK
 
Charts produced by software:
http://www.freestatistics.org/blog/date/2009/Nov/19/t1258657074i9urw99ge7hmcvd/10371k1258656953.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/19/t1258657074i9urw99ge7hmcvd/10371k1258656953.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/19/t1258657074i9urw99ge7hmcvd/1s6ns1258656953.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/19/t1258657074i9urw99ge7hmcvd/1s6ns1258656953.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/19/t1258657074i9urw99ge7hmcvd/29hl71258656953.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/19/t1258657074i9urw99ge7hmcvd/29hl71258656953.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/19/t1258657074i9urw99ge7hmcvd/31m8m1258656953.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/19/t1258657074i9urw99ge7hmcvd/31m8m1258656953.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/19/t1258657074i9urw99ge7hmcvd/48fkw1258656953.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/19/t1258657074i9urw99ge7hmcvd/48fkw1258656953.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/19/t1258657074i9urw99ge7hmcvd/506hi1258656953.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/19/t1258657074i9urw99ge7hmcvd/506hi1258656953.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/19/t1258657074i9urw99ge7hmcvd/6n5tx1258656953.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/19/t1258657074i9urw99ge7hmcvd/6n5tx1258656953.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/19/t1258657074i9urw99ge7hmcvd/7c78d1258656953.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/19/t1258657074i9urw99ge7hmcvd/7c78d1258656953.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/19/t1258657074i9urw99ge7hmcvd/80bjb1258656953.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/19/t1258657074i9urw99ge7hmcvd/80bjb1258656953.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/19/t1258657074i9urw99ge7hmcvd/91y531258656953.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/19/t1258657074i9urw99ge7hmcvd/91y531258656953.ps (open in new window)


 
Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
 
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

  • personalize online software applications according to your needs
  • enforce strict security rules with respect to the data that you upload (e.g. statistical data)
  • manage user sessions of online applications
  • alert you about important changes or upgrades in resources or applications

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by