R version 2.9.0 (2009-04-17)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(7.2,102.9,7.4,97.4,8.8,111.4,9.3,87.4,9.3,96.8,8.7,114.1,8.2,110.3,8.3,103.9,8.5,101.6,8.6,94.6,8.5,95.9,8.2,104.7,8.1,102.8,7.9,98.1,8.6,113.9,8.7,80.9,8.7,95.7,8.5,113.2,8.4,105.9,8.5,108.8,8.7,102.3,8.7,99,8.6,100.7,8.5,115.5,8.3,100.7,8,109.9,8.2,114.6,8.1,85.4,8.1,100.5,8,114.8,7.9,116.5,7.9,112.9,8,102,8,106,7.9,105.3,8,118.8,7.7,106.1,7.2,109.3,7.5,117.2,7.3,92.5,7,104.2,7,112.5,7,122.4,7.2,113.3,7.3,100,7.1,110.7,6.8,112.8,6.4,109.8,6.1,117.3,6.5,109.1,7.7,115.9,7.9,96,7.5,99.8,6.9,116.8,6.6,115.7,6.9,99.4,7.7,94.3,8,91,8,93.2,7.7,103.1,7.3,94.1,7.4,91.8,8.1,102.7,8.3,82.6,8.2,89.1),dim=c(2,65),dimnames=list(c('Werkl.graad','Industr.prod.'),1:65))
>  y <- array(NA,dim=c(2,65),dimnames=list(c('Werkl.graad','Industr.prod.'),1:65))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'Linear Trend'
> par2 = 'Include Monthly Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
	The following object(s) are masked from package:base :
	 as.Date.numeric 
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
   Werkl.graad Industr.prod. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11  t
1          7.2         102.9  1  0  0  0  0  0  0  0  0   0   0  1
2          7.4          97.4  0  1  0  0  0  0  0  0  0   0   0  2
3          8.8         111.4  0  0  1  0  0  0  0  0  0   0   0  3
4          9.3          87.4  0  0  0  1  0  0  0  0  0   0   0  4
5          9.3          96.8  0  0  0  0  1  0  0  0  0   0   0  5
6          8.7         114.1  0  0  0  0  0  1  0  0  0   0   0  6
7          8.2         110.3  0  0  0  0  0  0  1  0  0   0   0  7
8          8.3         103.9  0  0  0  0  0  0  0  1  0   0   0  8
9          8.5         101.6  0  0  0  0  0  0  0  0  1   0   0  9
10         8.6          94.6  0  0  0  0  0  0  0  0  0   1   0 10
11         8.5          95.9  0  0  0  0  0  0  0  0  0   0   1 11
12         8.2         104.7  0  0  0  0  0  0  0  0  0   0   0 12
13         8.1         102.8  1  0  0  0  0  0  0  0  0   0   0 13
14         7.9          98.1  0  1  0  0  0  0  0  0  0   0   0 14
15         8.6         113.9  0  0  1  0  0  0  0  0  0   0   0 15
16         8.7          80.9  0  0  0  1  0  0  0  0  0   0   0 16
17         8.7          95.7  0  0  0  0  1  0  0  0  0   0   0 17
18         8.5         113.2  0  0  0  0  0  1  0  0  0   0   0 18
19         8.4         105.9  0  0  0  0  0  0  1  0  0   0   0 19
20         8.5         108.8  0  0  0  0  0  0  0  1  0   0   0 20
21         8.7         102.3  0  0  0  0  0  0  0  0  1   0   0 21
22         8.7          99.0  0  0  0  0  0  0  0  0  0   1   0 22
23         8.6         100.7  0  0  0  0  0  0  0  0  0   0   1 23
24         8.5         115.5  0  0  0  0  0  0  0  0  0   0   0 24
25         8.3         100.7  1  0  0  0  0  0  0  0  0   0   0 25
26         8.0         109.9  0  1  0  0  0  0  0  0  0   0   0 26
27         8.2         114.6  0  0  1  0  0  0  0  0  0   0   0 27
28         8.1          85.4  0  0  0  1  0  0  0  0  0   0   0 28
29         8.1         100.5  0  0  0  0  1  0  0  0  0   0   0 29
30         8.0         114.8  0  0  0  0  0  1  0  0  0   0   0 30
31         7.9         116.5  0  0  0  0  0  0  1  0  0   0   0 31
32         7.9         112.9  0  0  0  0  0  0  0  1  0   0   0 32
33         8.0         102.0  0  0  0  0  0  0  0  0  1   0   0 33
34         8.0         106.0  0  0  0  0  0  0  0  0  0   1   0 34
35         7.9         105.3  0  0  0  0  0  0  0  0  0   0   1 35
36         8.0         118.8  0  0  0  0  0  0  0  0  0   0   0 36
37         7.7         106.1  1  0  0  0  0  0  0  0  0   0   0 37
38         7.2         109.3  0  1  0  0  0  0  0  0  0   0   0 38
39         7.5         117.2  0  0  1  0  0  0  0  0  0   0   0 39
40         7.3          92.5  0  0  0  1  0  0  0  0  0   0   0 40
41         7.0         104.2  0  0  0  0  1  0  0  0  0   0   0 41
42         7.0         112.5  0  0  0  0  0  1  0  0  0   0   0 42
43         7.0         122.4  0  0  0  0  0  0  1  0  0   0   0 43
44         7.2         113.3  0  0  0  0  0  0  0  1  0   0   0 44
45         7.3         100.0  0  0  0  0  0  0  0  0  1   0   0 45
46         7.1         110.7  0  0  0  0  0  0  0  0  0   1   0 46
47         6.8         112.8  0  0  0  0  0  0  0  0  0   0   1 47
48         6.4         109.8  0  0  0  0  0  0  0  0  0   0   0 48
49         6.1         117.3  1  0  0  0  0  0  0  0  0   0   0 49
50         6.5         109.1  0  1  0  0  0  0  0  0  0   0   0 50
51         7.7         115.9  0  0  1  0  0  0  0  0  0   0   0 51
52         7.9          96.0  0  0  0  1  0  0  0  0  0   0   0 52
53         7.5          99.8  0  0  0  0  1  0  0  0  0   0   0 53
54         6.9         116.8  0  0  0  0  0  1  0  0  0   0   0 54
55         6.6         115.7  0  0  0  0  0  0  1  0  0   0   0 55
56         6.9          99.4  0  0  0  0  0  0  0  1  0   0   0 56
57         7.7          94.3  0  0  0  0  0  0  0  0  1   0   0 57
58         8.0          91.0  0  0  0  0  0  0  0  0  0   1   0 58
59         8.0          93.2  0  0  0  0  0  0  0  0  0   0   1 59
60         7.7         103.1  0  0  0  0  0  0  0  0  0   0   0 60
61         7.3          94.1  1  0  0  0  0  0  0  0  0   0   0 61
62         7.4          91.8  0  1  0  0  0  0  0  0  0   0   0 62
63         8.1         102.7  0  0  1  0  0  0  0  0  0   0   0 63
64         8.3          82.6  0  0  0  1  0  0  0  0  0   0   0 64
65         8.2          89.1  0  0  0  0  1  0  0  0  0   0   0 65
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
  (Intercept)  Industr.prod.             M1             M2             M3  
     13.09433       -0.04081       -0.68631       -0.76971        0.41211  
           M4             M5             M6             M7             M8  
     -0.47448       -0.16784        0.08081       -0.10103       -0.20322  
           M9            M10            M11              t  
     -0.21112       -0.13908       -0.18216       -0.02306  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
     Min       1Q   Median       3Q      Max 
-1.10700 -0.26383  0.07073  0.31931  0.75956 
Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)   13.09433    1.13490  11.538 7.87e-16 ***
Industr.prod. -0.04081    0.01007  -4.053 0.000173 ***
M1            -0.68631    0.28586  -2.401 0.020043 *  
M2            -0.76970    0.28917  -2.662 0.010371 *  
M3             0.41210    0.27918   1.476 0.146055    
M4            -0.47448    0.36137  -1.313 0.195064    
M5            -0.16784    0.30610  -0.548 0.585858    
M6             0.08081    0.29371   0.275 0.784311    
M7            -0.10103    0.29337  -0.344 0.731986    
M8            -0.20322    0.29202  -0.696 0.489641    
M9            -0.21112    0.30869  -0.684 0.497130    
M10           -0.13908    0.30788  -0.452 0.653371    
M11           -0.18216    0.30370  -0.600 0.551295    
t             -0.02306    0.00305  -7.560 7.13e-10 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 0.4593 on 51 degrees of freedom
Multiple R-squared: 0.6575,	Adjusted R-squared: 0.5702 
F-statistic: 7.532 on 13 and 51 DF,  p-value: 5.488e-08 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
            [,1]      [,2]       [,3]
 [1,] 0.69932107 0.6013579 0.30067893
 [2,] 0.55448053 0.8910389 0.44551947
 [3,] 0.48474858 0.9694972 0.51525142
 [4,] 0.36164288 0.7232858 0.63835712
 [5,] 0.25916765 0.5183353 0.74083235
 [6,] 0.17402384 0.3480477 0.82597616
 [7,] 0.11016090 0.2203218 0.88983910
 [8,] 0.07793796 0.1558759 0.92206204
 [9,] 0.09449374 0.1889875 0.90550626
[10,] 0.06983127 0.1396625 0.93016873
[11,] 0.09445724 0.1889145 0.90554276
[12,] 0.23104737 0.4620947 0.76895263
[13,] 0.30603122 0.6120624 0.69396878
[14,] 0.27909341 0.5581868 0.72090659
[15,] 0.23699661 0.4739932 0.76300339
[16,] 0.24107387 0.4821477 0.75892613
[17,] 0.20078307 0.4015661 0.79921693
[18,] 0.17895297 0.3579059 0.82104703
[19,] 0.14755830 0.2951166 0.85244170
[20,] 0.32350798 0.6470160 0.67649202
[21,] 0.48498229 0.9699646 0.51501771
[22,] 0.59506245 0.8098751 0.40493755
[23,] 0.57629928 0.8474014 0.42370072
[24,] 0.64809955 0.7038009 0.35190045
[25,] 0.71986553 0.5602689 0.28013447
[26,] 0.66911714 0.6617657 0.33088286
[27,] 0.74348939 0.5130212 0.25651061
[28,] 0.93429264 0.1314147 0.06570736
[29,] 0.89694451 0.2061110 0.10305549
[30,] 0.82538291 0.3492342 0.17461709
[31,] 0.76046721 0.4790656 0.23953279
[32,] 0.95075465 0.0984907 0.04924535
> postscript(file="/var/www/html/rcomp/tmp/1ydkc1258659091.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/27ydn1258659091.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/3lwe01258659091.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/43vpc1258659091.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/5j3ip1258659091.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 65 
Frequency = 1 
           1            2            3            4            5            6 
-0.985883240 -0.903873807 -0.091324230  0.338937642  0.438944912  0.319314507 
           7            8            9           10           11           12 
-0.130856818 -0.166776075 -0.029680574 -0.264310183 -0.245126332 -0.345126332 
          13           14           15           16           17           18 
 0.186706096 -0.098638531  0.087364411 -0.249640543  0.070726822  0.359257902 
          19           20           21           22           23           24 
 0.166260590  0.509850386  0.475554702  0.291912566  0.327419387  0.672263938 
          25           26           27           28           29           30 
 0.577680581  0.759559164 -0.007400313 -0.389337051 -0.056727458  0.201219861 
          31           32           33           34           35           36 
 0.375489375  0.353830908  0.039982553  0.154234620  0.091803622  0.583598520 
          37           38           39           40           41           42 
 0.474710756  0.211744788 -0.324630929 -0.622934254 -0.729069907 -0.615967138 
          43           44           45           46           47           48 
-0.007076738 -0.053176044 -0.464962219 -0.277300403 -0.425470611 -1.106998228 
          49           50           51           52           53           54 
-0.391576004 -0.219746619  0.098989497  0.396561812 -0.131952499 -0.263825132 
          55           56           57           58           59           60 
-0.403816408 -0.643729175 -0.020894464  0.095463400  0.251373934  0.196262102 
          61           62           63           64           65 
 0.138361811  0.250955004  0.237001563  0.526412394  0.408078130 
> postscript(file="/var/www/html/rcomp/tmp/6vocf1258659091.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 65 
Frequency = 1 
   lag(myerror, k = 1)      myerror
 0        -0.985883240           NA
 1        -0.903873807 -0.985883240
 2        -0.091324230 -0.903873807
 3         0.338937642 -0.091324230
 4         0.438944912  0.338937642
 5         0.319314507  0.438944912
 6        -0.130856818  0.319314507
 7        -0.166776075 -0.130856818
 8        -0.029680574 -0.166776075
 9        -0.264310183 -0.029680574
10        -0.245126332 -0.264310183
11        -0.345126332 -0.245126332
12         0.186706096 -0.345126332
13        -0.098638531  0.186706096
14         0.087364411 -0.098638531
15        -0.249640543  0.087364411
16         0.070726822 -0.249640543
17         0.359257902  0.070726822
18         0.166260590  0.359257902
19         0.509850386  0.166260590
20         0.475554702  0.509850386
21         0.291912566  0.475554702
22         0.327419387  0.291912566
23         0.672263938  0.327419387
24         0.577680581  0.672263938
25         0.759559164  0.577680581
26        -0.007400313  0.759559164
27        -0.389337051 -0.007400313
28        -0.056727458 -0.389337051
29         0.201219861 -0.056727458
30         0.375489375  0.201219861
31         0.353830908  0.375489375
32         0.039982553  0.353830908
33         0.154234620  0.039982553
34         0.091803622  0.154234620
35         0.583598520  0.091803622
36         0.474710756  0.583598520
37         0.211744788  0.474710756
38        -0.324630929  0.211744788
39        -0.622934254 -0.324630929
40        -0.729069907 -0.622934254
41        -0.615967138 -0.729069907
42        -0.007076738 -0.615967138
43        -0.053176044 -0.007076738
44        -0.464962219 -0.053176044
45        -0.277300403 -0.464962219
46        -0.425470611 -0.277300403
47        -1.106998228 -0.425470611
48        -0.391576004 -1.106998228
49        -0.219746619 -0.391576004
50         0.098989497 -0.219746619
51         0.396561812  0.098989497
52        -0.131952499  0.396561812
53        -0.263825132 -0.131952499
54        -0.403816408 -0.263825132
55        -0.643729175 -0.403816408
56        -0.020894464 -0.643729175
57         0.095463400 -0.020894464
58         0.251373934  0.095463400
59         0.196262102  0.251373934
60         0.138361811  0.196262102
61         0.250955004  0.138361811
62         0.237001563  0.250955004
63         0.526412394  0.237001563
64         0.408078130  0.526412394
65                  NA  0.408078130
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)      myerror
 [1,]        -0.903873807 -0.985883240
 [2,]        -0.091324230 -0.903873807
 [3,]         0.338937642 -0.091324230
 [4,]         0.438944912  0.338937642
 [5,]         0.319314507  0.438944912
 [6,]        -0.130856818  0.319314507
 [7,]        -0.166776075 -0.130856818
 [8,]        -0.029680574 -0.166776075
 [9,]        -0.264310183 -0.029680574
[10,]        -0.245126332 -0.264310183
[11,]        -0.345126332 -0.245126332
[12,]         0.186706096 -0.345126332
[13,]        -0.098638531  0.186706096
[14,]         0.087364411 -0.098638531
[15,]        -0.249640543  0.087364411
[16,]         0.070726822 -0.249640543
[17,]         0.359257902  0.070726822
[18,]         0.166260590  0.359257902
[19,]         0.509850386  0.166260590
[20,]         0.475554702  0.509850386
[21,]         0.291912566  0.475554702
[22,]         0.327419387  0.291912566
[23,]         0.672263938  0.327419387
[24,]         0.577680581  0.672263938
[25,]         0.759559164  0.577680581
[26,]        -0.007400313  0.759559164
[27,]        -0.389337051 -0.007400313
[28,]        -0.056727458 -0.389337051
[29,]         0.201219861 -0.056727458
[30,]         0.375489375  0.201219861
[31,]         0.353830908  0.375489375
[32,]         0.039982553  0.353830908
[33,]         0.154234620  0.039982553
[34,]         0.091803622  0.154234620
[35,]         0.583598520  0.091803622
[36,]         0.474710756  0.583598520
[37,]         0.211744788  0.474710756
[38,]        -0.324630929  0.211744788
[39,]        -0.622934254 -0.324630929
[40,]        -0.729069907 -0.622934254
[41,]        -0.615967138 -0.729069907
[42,]        -0.007076738 -0.615967138
[43,]        -0.053176044 -0.007076738
[44,]        -0.464962219 -0.053176044
[45,]        -0.277300403 -0.464962219
[46,]        -0.425470611 -0.277300403
[47,]        -1.106998228 -0.425470611
[48,]        -0.391576004 -1.106998228
[49,]        -0.219746619 -0.391576004
[50,]         0.098989497 -0.219746619
[51,]         0.396561812  0.098989497
[52,]        -0.131952499  0.396561812
[53,]        -0.263825132 -0.131952499
[54,]        -0.403816408 -0.263825132
[55,]        -0.643729175 -0.403816408
[56,]        -0.020894464 -0.643729175
[57,]         0.095463400 -0.020894464
[58,]         0.251373934  0.095463400
[59,]         0.196262102  0.251373934
[60,]         0.138361811  0.196262102
[61,]         0.250955004  0.138361811
[62,]         0.237001563  0.250955004
[63,]         0.526412394  0.237001563
[64,]         0.408078130  0.526412394
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)      myerror
1         -0.903873807 -0.985883240
2         -0.091324230 -0.903873807
3          0.338937642 -0.091324230
4          0.438944912  0.338937642
5          0.319314507  0.438944912
6         -0.130856818  0.319314507
7         -0.166776075 -0.130856818
8         -0.029680574 -0.166776075
9         -0.264310183 -0.029680574
10        -0.245126332 -0.264310183
11        -0.345126332 -0.245126332
12         0.186706096 -0.345126332
13        -0.098638531  0.186706096
14         0.087364411 -0.098638531
15        -0.249640543  0.087364411
16         0.070726822 -0.249640543
17         0.359257902  0.070726822
18         0.166260590  0.359257902
19         0.509850386  0.166260590
20         0.475554702  0.509850386
21         0.291912566  0.475554702
22         0.327419387  0.291912566
23         0.672263938  0.327419387
24         0.577680581  0.672263938
25         0.759559164  0.577680581
26        -0.007400313  0.759559164
27        -0.389337051 -0.007400313
28        -0.056727458 -0.389337051
29         0.201219861 -0.056727458
30         0.375489375  0.201219861
31         0.353830908  0.375489375
32         0.039982553  0.353830908
33         0.154234620  0.039982553
34         0.091803622  0.154234620
35         0.583598520  0.091803622
36         0.474710756  0.583598520
37         0.211744788  0.474710756
38        -0.324630929  0.211744788
39        -0.622934254 -0.324630929
40        -0.729069907 -0.622934254
41        -0.615967138 -0.729069907
42        -0.007076738 -0.615967138
43        -0.053176044 -0.007076738
44        -0.464962219 -0.053176044
45        -0.277300403 -0.464962219
46        -0.425470611 -0.277300403
47        -1.106998228 -0.425470611
48        -0.391576004 -1.106998228
49        -0.219746619 -0.391576004
50         0.098989497 -0.219746619
51         0.396561812  0.098989497
52        -0.131952499  0.396561812
53        -0.263825132 -0.131952499
54        -0.403816408 -0.263825132
55        -0.643729175 -0.403816408
56        -0.020894464 -0.643729175
57         0.095463400 -0.020894464
58         0.251373934  0.095463400
59         0.196262102  0.251373934
60         0.138361811  0.196262102
61         0.250955004  0.138361811
62         0.237001563  0.250955004
63         0.526412394  0.237001563
64         0.408078130  0.526412394
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/7wqci1258659091.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/89g9z1258659091.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/9fb2c1258659091.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/html/rcomp/tmp/10rdsr1258659091.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/11wxfd1258659091.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/12d3431258659091.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/1321le1258659091.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/14g40x1258659091.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/15gq8n1258659091.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/16zzt71258659091.tab") 
+ }
> 
> system("convert tmp/1ydkc1258659091.ps tmp/1ydkc1258659091.png")
> system("convert tmp/27ydn1258659091.ps tmp/27ydn1258659091.png")
> system("convert tmp/3lwe01258659091.ps tmp/3lwe01258659091.png")
> system("convert tmp/43vpc1258659091.ps tmp/43vpc1258659091.png")
> system("convert tmp/5j3ip1258659091.ps tmp/5j3ip1258659091.png")
> system("convert tmp/6vocf1258659091.ps tmp/6vocf1258659091.png")
> system("convert tmp/7wqci1258659091.ps tmp/7wqci1258659091.png")
> system("convert tmp/89g9z1258659091.ps tmp/89g9z1258659091.png")
> system("convert tmp/9fb2c1258659091.ps tmp/9fb2c1258659091.png")
> system("convert tmp/10rdsr1258659091.ps tmp/10rdsr1258659091.png")
> 
> 
> proc.time()
   user  system elapsed 
  2.457   1.560   2.838