R version 2.9.0 (2009-04-17)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(115.6,37.2,111.9,37.2,107,34.7,107.1,32.5,100.6,33.5,99.2,31.5,108.4,31.2,103,27,99.8,26.7,115,26.5,90.8,26,95.9,27.2,114.4,30.5,108.2,33.7,112.6,34.2,109.1,36.7,105,36.2,105,38.5,118.5,40,103.7,42.5,112.5,43.5,116.6,43.3,96.6,45.5,101.9,44.3,116.5,43,119.3,43.5,115.4,41.5,108.5,42.5,111.5,41.3,108.8,39.5,121.8,38.5,109.6,41,112.2,44.5,119.6,46,104.1,44,105.3,41.5,115,41.3,124.1,38,116.8,38,107.5,36.2,115.6,38.7,116.2,38.7,116.3,39.2,119,35.7,111.9,36.5,118.6,36.7,106.9,34.7,103.2,35,118.6,28.2,118.7,23.7,102.8,15,100.6,8.7,94.9,11,94.5,7.5,102.9,5.7,95.3,9.3,92.5,10.2,102.7,15.7,91.5,18.1,89.5,20.8),dim=c(2,60),dimnames=list(c('Ipzb','Cvn'),1:60))
>  y <- array(NA,dim=c(2,60),dimnames=list(c('Ipzb','Cvn'),1:60))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'No Linear Trend'
> par2 = 'Include Monthly Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
	The following object(s) are masked from package:base :
	 as.Date.numeric 
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
    Ipzb  Cvn M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11
1  115.6 37.2  1  0  0  0  0  0  0  0  0   0   0
2  111.9 37.2  0  1  0  0  0  0  0  0  0   0   0
3  107.0 34.7  0  0  1  0  0  0  0  0  0   0   0
4  107.1 32.5  0  0  0  1  0  0  0  0  0   0   0
5  100.6 33.5  0  0  0  0  1  0  0  0  0   0   0
6   99.2 31.5  0  0  0  0  0  1  0  0  0   0   0
7  108.4 31.2  0  0  0  0  0  0  1  0  0   0   0
8  103.0 27.0  0  0  0  0  0  0  0  1  0   0   0
9   99.8 26.7  0  0  0  0  0  0  0  0  1   0   0
10 115.0 26.5  0  0  0  0  0  0  0  0  0   1   0
11  90.8 26.0  0  0  0  0  0  0  0  0  0   0   1
12  95.9 27.2  0  0  0  0  0  0  0  0  0   0   0
13 114.4 30.5  1  0  0  0  0  0  0  0  0   0   0
14 108.2 33.7  0  1  0  0  0  0  0  0  0   0   0
15 112.6 34.2  0  0  1  0  0  0  0  0  0   0   0
16 109.1 36.7  0  0  0  1  0  0  0  0  0   0   0
17 105.0 36.2  0  0  0  0  1  0  0  0  0   0   0
18 105.0 38.5  0  0  0  0  0  1  0  0  0   0   0
19 118.5 40.0  0  0  0  0  0  0  1  0  0   0   0
20 103.7 42.5  0  0  0  0  0  0  0  1  0   0   0
21 112.5 43.5  0  0  0  0  0  0  0  0  1   0   0
22 116.6 43.3  0  0  0  0  0  0  0  0  0   1   0
23  96.6 45.5  0  0  0  0  0  0  0  0  0   0   1
24 101.9 44.3  0  0  0  0  0  0  0  0  0   0   0
25 116.5 43.0  1  0  0  0  0  0  0  0  0   0   0
26 119.3 43.5  0  1  0  0  0  0  0  0  0   0   0
27 115.4 41.5  0  0  1  0  0  0  0  0  0   0   0
28 108.5 42.5  0  0  0  1  0  0  0  0  0   0   0
29 111.5 41.3  0  0  0  0  1  0  0  0  0   0   0
30 108.8 39.5  0  0  0  0  0  1  0  0  0   0   0
31 121.8 38.5  0  0  0  0  0  0  1  0  0   0   0
32 109.6 41.0  0  0  0  0  0  0  0  1  0   0   0
33 112.2 44.5  0  0  0  0  0  0  0  0  1   0   0
34 119.6 46.0  0  0  0  0  0  0  0  0  0   1   0
35 104.1 44.0  0  0  0  0  0  0  0  0  0   0   1
36 105.3 41.5  0  0  0  0  0  0  0  0  0   0   0
37 115.0 41.3  1  0  0  0  0  0  0  0  0   0   0
38 124.1 38.0  0  1  0  0  0  0  0  0  0   0   0
39 116.8 38.0  0  0  1  0  0  0  0  0  0   0   0
40 107.5 36.2  0  0  0  1  0  0  0  0  0   0   0
41 115.6 38.7  0  0  0  0  1  0  0  0  0   0   0
42 116.2 38.7  0  0  0  0  0  1  0  0  0   0   0
43 116.3 39.2  0  0  0  0  0  0  1  0  0   0   0
44 119.0 35.7  0  0  0  0  0  0  0  1  0   0   0
45 111.9 36.5  0  0  0  0  0  0  0  0  1   0   0
46 118.6 36.7  0  0  0  0  0  0  0  0  0   1   0
47 106.9 34.7  0  0  0  0  0  0  0  0  0   0   1
48 103.2 35.0  0  0  0  0  0  0  0  0  0   0   0
49 118.6 28.2  1  0  0  0  0  0  0  0  0   0   0
50 118.7 23.7  0  1  0  0  0  0  0  0  0   0   0
51 102.8 15.0  0  0  1  0  0  0  0  0  0   0   0
52 100.6  8.7  0  0  0  1  0  0  0  0  0   0   0
53  94.9 11.0  0  0  0  0  1  0  0  0  0   0   0
54  94.5  7.5  0  0  0  0  0  1  0  0  0   0   0
55 102.9  5.7  0  0  0  0  0  0  1  0  0   0   0
56  95.3  9.3  0  0  0  0  0  0  0  1  0   0   0
57  92.5 10.2  0  0  0  0  0  0  0  0  1   0   0
58 102.7 15.7  0  0  0  0  0  0  0  0  0   1   0
59  91.5 18.1  0  0  0  0  0  0  0  0  0   0   1
60  89.5 20.8  0  0  0  0  0  0  0  0  0   0   0
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)          Cvn           M1           M2           M3           M4  
    83.9746       0.4498      15.8344      16.6233      12.2458       8.4975  
         M5           M6           M7           M8           M9          M10  
     7.0887       6.7585      15.6974       8.1565       7.2857      15.3940  
        M11  
    -1.1350  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
    Min      1Q  Median      3Q     Max 
-7.5563 -3.0601 -0.2384  2.0595 10.8109 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 83.97464    2.78663  30.135  < 2e-16 ***
Cvn          0.44980    0.05576   8.067 2.02e-10 ***
M1          15.83445    2.90875   5.444 1.85e-06 ***
M2          16.62329    2.90711   5.718 7.17e-07 ***
M3          12.24579    2.90659   4.213 0.000113 ***
M4           8.49752    2.90915   2.921 0.005346 ** 
M5           7.08868    2.90737   2.438 0.018596 *  
M6           6.75848    2.90964   2.323 0.024570 *  
M7          15.69744    2.91028   5.394 2.20e-06 ***
M8           8.15648    2.90975   2.803 0.007331 ** 
M9           7.28571    2.90714   2.506 0.015725 *  
M10         15.39398    2.90597   5.297 3.06e-06 ***
M11         -1.13502    2.90597  -0.391 0.697871    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 4.595 on 47 degrees of freedom
Multiple R-squared: 0.7786,	Adjusted R-squared: 0.7221 
F-statistic: 13.78 on 12 and 47 DF,  p-value: 1.339e-11 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
            [,1]       [,2]       [,3]
 [1,] 0.19283554 0.38567108 0.80716446
 [2,] 0.12887705 0.25775409 0.87112295
 [3,] 0.07260524 0.14521048 0.92739476
 [4,] 0.05408050 0.10816100 0.94591950
 [5,] 0.17425037 0.34850074 0.82574963
 [6,] 0.14897774 0.29795547 0.85102226
 [7,] 0.16073846 0.32147692 0.83926154
 [8,] 0.17001910 0.34003819 0.82998090
 [9,] 0.11482766 0.22965532 0.88517234
[10,] 0.08353943 0.16707885 0.91646057
[11,] 0.15499945 0.30999890 0.84500055
[12,] 0.11764347 0.23528693 0.88235653
[13,] 0.11027040 0.22054079 0.88972960
[14,] 0.12862124 0.25724249 0.87137876
[15,] 0.14163060 0.28326119 0.85836940
[16,] 0.17613533 0.35227067 0.82386467
[17,] 0.21434157 0.42868314 0.78565843
[18,] 0.15938785 0.31877570 0.84061215
[19,] 0.11568791 0.23137582 0.88431209
[20,] 0.15236238 0.30472477 0.84763762
[21,] 0.11212420 0.22424841 0.88787580
[22,] 0.23789532 0.47579064 0.76210468
[23,] 0.36544159 0.73088318 0.63455841
[24,] 0.29149778 0.58299557 0.70850222
[25,] 0.56611392 0.86777217 0.43388608
[26,] 0.53700932 0.92598135 0.46299068
[27,] 0.50133825 0.99732350 0.49866175
[28,] 0.97112452 0.05775096 0.02887548
[29,] 0.95726329 0.08547342 0.04273671
> postscript(file="/var/www/html/rcomp/tmp/12cdm1258727961.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/292r41258727961.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/3qau11258727961.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/4w5q61258727961.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/5ckd91258727961.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 60 
Frequency = 1 
           1            2            3            4            5            6 
-0.941771734 -5.430610374 -4.828602503  0.009232201 -5.531732378 -5.701929159 
           7            8            9           10           11           12 
-5.305944901 -1.275806801 -3.470098037  3.711594985 -3.734507341 -0.309290882 
          13           14           15           16           17           18 
 0.871909834 -7.556299107  0.996299107  0.120058681 -2.346201070 -3.050551693 
          19           20           21           22           23           24 
 0.835786770 -7.547756699  1.673207881 -2.245099097 -6.705670115 -2.000925930 
          25           26           27           28           29           30 
-2.650630405 -0.864370655  0.512735607 -3.088799990  1.859802512  0.299645088 
          31           32           33           34           35           36 
 4.810491599 -0.973051870  0.923404662 -0.459567789  1.469034714  2.658523084 
          37           38           39           40           41           42 
-3.385964933  6.409547051  3.487046874 -1.255039710  7.129290882  8.059487663 
          43           44           45           46           47           48 
-1.004370655 10.810905192  4.221830415  2.723602149  8.452204652  3.482244008 
          49           50           51           52           53           54 
 6.106457238  7.441733085 -0.167479085  4.214548818 -1.111159947  0.393348101 
          55           56           57           58           59           60 
 0.664037188 -1.014289822 -3.348344921 -3.730530248  0.518938090 -3.830550280 
> postscript(file="/var/www/html/rcomp/tmp/6s5x61258727961.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 60 
Frequency = 1 
   lag(myerror, k = 1)      myerror
 0        -0.941771734           NA
 1        -5.430610374 -0.941771734
 2        -4.828602503 -5.430610374
 3         0.009232201 -4.828602503
 4        -5.531732378  0.009232201
 5        -5.701929159 -5.531732378
 6        -5.305944901 -5.701929159
 7        -1.275806801 -5.305944901
 8        -3.470098037 -1.275806801
 9         3.711594985 -3.470098037
10        -3.734507341  3.711594985
11        -0.309290882 -3.734507341
12         0.871909834 -0.309290882
13        -7.556299107  0.871909834
14         0.996299107 -7.556299107
15         0.120058681  0.996299107
16        -2.346201070  0.120058681
17        -3.050551693 -2.346201070
18         0.835786770 -3.050551693
19        -7.547756699  0.835786770
20         1.673207881 -7.547756699
21        -2.245099097  1.673207881
22        -6.705670115 -2.245099097
23        -2.000925930 -6.705670115
24        -2.650630405 -2.000925930
25        -0.864370655 -2.650630405
26         0.512735607 -0.864370655
27        -3.088799990  0.512735607
28         1.859802512 -3.088799990
29         0.299645088  1.859802512
30         4.810491599  0.299645088
31        -0.973051870  4.810491599
32         0.923404662 -0.973051870
33        -0.459567789  0.923404662
34         1.469034714 -0.459567789
35         2.658523084  1.469034714
36        -3.385964933  2.658523084
37         6.409547051 -3.385964933
38         3.487046874  6.409547051
39        -1.255039710  3.487046874
40         7.129290882 -1.255039710
41         8.059487663  7.129290882
42        -1.004370655  8.059487663
43        10.810905192 -1.004370655
44         4.221830415 10.810905192
45         2.723602149  4.221830415
46         8.452204652  2.723602149
47         3.482244008  8.452204652
48         6.106457238  3.482244008
49         7.441733085  6.106457238
50        -0.167479085  7.441733085
51         4.214548818 -0.167479085
52        -1.111159947  4.214548818
53         0.393348101 -1.111159947
54         0.664037188  0.393348101
55        -1.014289822  0.664037188
56        -3.348344921 -1.014289822
57        -3.730530248 -3.348344921
58         0.518938090 -3.730530248
59        -3.830550280  0.518938090
60                  NA -3.830550280
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)      myerror
 [1,]        -5.430610374 -0.941771734
 [2,]        -4.828602503 -5.430610374
 [3,]         0.009232201 -4.828602503
 [4,]        -5.531732378  0.009232201
 [5,]        -5.701929159 -5.531732378
 [6,]        -5.305944901 -5.701929159
 [7,]        -1.275806801 -5.305944901
 [8,]        -3.470098037 -1.275806801
 [9,]         3.711594985 -3.470098037
[10,]        -3.734507341  3.711594985
[11,]        -0.309290882 -3.734507341
[12,]         0.871909834 -0.309290882
[13,]        -7.556299107  0.871909834
[14,]         0.996299107 -7.556299107
[15,]         0.120058681  0.996299107
[16,]        -2.346201070  0.120058681
[17,]        -3.050551693 -2.346201070
[18,]         0.835786770 -3.050551693
[19,]        -7.547756699  0.835786770
[20,]         1.673207881 -7.547756699
[21,]        -2.245099097  1.673207881
[22,]        -6.705670115 -2.245099097
[23,]        -2.000925930 -6.705670115
[24,]        -2.650630405 -2.000925930
[25,]        -0.864370655 -2.650630405
[26,]         0.512735607 -0.864370655
[27,]        -3.088799990  0.512735607
[28,]         1.859802512 -3.088799990
[29,]         0.299645088  1.859802512
[30,]         4.810491599  0.299645088
[31,]        -0.973051870  4.810491599
[32,]         0.923404662 -0.973051870
[33,]        -0.459567789  0.923404662
[34,]         1.469034714 -0.459567789
[35,]         2.658523084  1.469034714
[36,]        -3.385964933  2.658523084
[37,]         6.409547051 -3.385964933
[38,]         3.487046874  6.409547051
[39,]        -1.255039710  3.487046874
[40,]         7.129290882 -1.255039710
[41,]         8.059487663  7.129290882
[42,]        -1.004370655  8.059487663
[43,]        10.810905192 -1.004370655
[44,]         4.221830415 10.810905192
[45,]         2.723602149  4.221830415
[46,]         8.452204652  2.723602149
[47,]         3.482244008  8.452204652
[48,]         6.106457238  3.482244008
[49,]         7.441733085  6.106457238
[50,]        -0.167479085  7.441733085
[51,]         4.214548818 -0.167479085
[52,]        -1.111159947  4.214548818
[53,]         0.393348101 -1.111159947
[54,]         0.664037188  0.393348101
[55,]        -1.014289822  0.664037188
[56,]        -3.348344921 -1.014289822
[57,]        -3.730530248 -3.348344921
[58,]         0.518938090 -3.730530248
[59,]        -3.830550280  0.518938090
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)      myerror
1         -5.430610374 -0.941771734
2         -4.828602503 -5.430610374
3          0.009232201 -4.828602503
4         -5.531732378  0.009232201
5         -5.701929159 -5.531732378
6         -5.305944901 -5.701929159
7         -1.275806801 -5.305944901
8         -3.470098037 -1.275806801
9          3.711594985 -3.470098037
10        -3.734507341  3.711594985
11        -0.309290882 -3.734507341
12         0.871909834 -0.309290882
13        -7.556299107  0.871909834
14         0.996299107 -7.556299107
15         0.120058681  0.996299107
16        -2.346201070  0.120058681
17        -3.050551693 -2.346201070
18         0.835786770 -3.050551693
19        -7.547756699  0.835786770
20         1.673207881 -7.547756699
21        -2.245099097  1.673207881
22        -6.705670115 -2.245099097
23        -2.000925930 -6.705670115
24        -2.650630405 -2.000925930
25        -0.864370655 -2.650630405
26         0.512735607 -0.864370655
27        -3.088799990  0.512735607
28         1.859802512 -3.088799990
29         0.299645088  1.859802512
30         4.810491599  0.299645088
31        -0.973051870  4.810491599
32         0.923404662 -0.973051870
33        -0.459567789  0.923404662
34         1.469034714 -0.459567789
35         2.658523084  1.469034714
36        -3.385964933  2.658523084
37         6.409547051 -3.385964933
38         3.487046874  6.409547051
39        -1.255039710  3.487046874
40         7.129290882 -1.255039710
41         8.059487663  7.129290882
42        -1.004370655  8.059487663
43        10.810905192 -1.004370655
44         4.221830415 10.810905192
45         2.723602149  4.221830415
46         8.452204652  2.723602149
47         3.482244008  8.452204652
48         6.106457238  3.482244008
49         7.441733085  6.106457238
50        -0.167479085  7.441733085
51         4.214548818 -0.167479085
52        -1.111159947  4.214548818
53         0.393348101 -1.111159947
54         0.664037188  0.393348101
55        -1.014289822  0.664037188
56        -3.348344921 -1.014289822
57        -3.730530248 -3.348344921
58         0.518938090 -3.730530248
59        -3.830550280  0.518938090
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/7te5l1258727961.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/88qvg1258727961.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/97m7u1258727961.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/html/rcomp/tmp/10lfu81258727961.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/11hrle1258727961.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/12x49h1258727961.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/13ilqr1258727961.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/14zyxr1258727961.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/15ivhh1258727961.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/1639vm1258727961.tab") 
+ }
> 
> system("convert tmp/12cdm1258727961.ps tmp/12cdm1258727961.png")
> system("convert tmp/292r41258727961.ps tmp/292r41258727961.png")
> system("convert tmp/3qau11258727961.ps tmp/3qau11258727961.png")
> system("convert tmp/4w5q61258727961.ps tmp/4w5q61258727961.png")
> system("convert tmp/5ckd91258727961.ps tmp/5ckd91258727961.png")
> system("convert tmp/6s5x61258727961.ps tmp/6s5x61258727961.png")
> system("convert tmp/7te5l1258727961.ps tmp/7te5l1258727961.png")
> system("convert tmp/88qvg1258727961.ps tmp/88qvg1258727961.png")
> system("convert tmp/97m7u1258727961.ps tmp/97m7u1258727961.png")
> system("convert tmp/10lfu81258727961.ps tmp/10lfu81258727961.png")
> 
> 
> proc.time()
   user  system elapsed 
  2.423   1.589   2.868