Home » date » 2009 » Nov » 20 »

Ws 7

*The author of this computation has been verified*
R Software Module: /rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Fri, 20 Nov 2009 08:39:05 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2009/Nov/20/t1258731594ee7k6cf46ar7un1.htm/, Retrieved Fri, 20 Nov 2009 16:40:06 +0100
 
BibTeX entries for LaTeX users:
@Manual{KEY,
    author = {{YOUR NAME}},
    publisher = {Office for Research Development and Education},
    title = {Statistical Computations at FreeStatistics.org, URL http://www.freestatistics.org/blog/date/2009/Nov/20/t1258731594ee7k6cf46ar7un1.htm/},
    year = {2009},
}
@Manual{R,
    title = {R: A Language and Environment for Statistical Computing},
    author = {{R Development Core Team}},
    organization = {R Foundation for Statistical Computing},
    address = {Vienna, Austria},
    year = {2009},
    note = {{ISBN} 3-900051-07-0},
    url = {http://www.R-project.org},
}
 
Original text written by user:
 
IsPrivate?
No (this computation is public)
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
100 100 96.21064363 97.82226485 96.31280765 94.04971502 107.1793443 91.12460521 114.9066592 93.13202153 92.56060184 93.88342812 114.9995356 92.55349954 107.1236185 94.43494835 117.7765394 96.25017563 107.3650971 100.4355715 106.2970187 101.5036685 114.5072908 99.39789728 98.0031578 99.68990733 103.0649206 101.6895041 100.2879168 103.6652759 104.6066685 103.0532766 111.1544534 100.9500712 104.9874617 102.345366 109.9284852 101.6472299 111.5352466 99.56809393 132.4974459 95.67727392 100.3436426 96.58494865 123.0983561 96.32604937 114.2379493 95.37109101 104.569518 96.00056203 109.0833101 96.88367859 106.9843039 94.85280372 133.6769759 92.46943974 124.8537197 93.99180173 122.5132349 93.45262168 116.8013374 92.26698759 116.0118882 90.39653498 129.7575926 90.43001228 125.1973623 91.04995327 143.7912139 89.07845784 127.9465032 89.69314509 130.2962757 87.92459054 108.4424631 85.8789319 129.3675118 83.20612366 143.6797622 83.85722053 131.8844618 83.01393462 117.6186496 82.8450 etc...
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
Import[t] = + 221.603731633023 -1.11914602538942Wisselkoers[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)221.60373163302324.2673549.131800
Wisselkoers-1.119146025389420.262683-4.26057.6e-053.8e-05


Multiple Linear Regression - Regression Statistics
Multiple R0.488221079733609
R-squared0.238359822696251
Adjusted R-squared0.225228095501359
F-TEST (value)18.1514449058129
F-TEST (DF numerator)1
F-TEST (DF denominator)58
p-value7.58171647913253e-05
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation14.0068187711533
Sum Squared Residuals11379.0763811000


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
1100109.689129094081-9.68912909408146
296.21064363112.126332731555-15.9156891015547
396.31280765116.348366879383-20.0355592293827
4107.1793443119.621991897072-12.4426475970718
5114.9066592117.375399901242-2.46874070124189
692.56060184116.534466202592-23.973864362592
7114.9995356118.022850486951-3.02331488695078
8107.1236185115.917234529266-8.79361602926562
9117.7765394113.8857301336753.89080926632483
10107.3650971109.201660981083-1.83656388108339
11106.2970187108.006304468803-1.70928576880302
12114.5072908110.3629699600454.14432083995456
1398.0031578110.036168073214-12.0330102732142
14103.0649206107.798327295687-4.73340669568717
15100.2879168105.587150138641-5.29923333864065
16104.6066685106.272066722777-1.66539822277676
17111.1544534108.6258606867642.52859271323566
18104.9874617107.064322057098-2.07686035709781
19109.9284852107.8456382985942.08284690140632
20111.5352466110.1724950556631.36275154433664
21132.4974459114.52689080536017.9705550946395
22100.3436426113.511070238935-13.1674276389346
23123.0983561113.8008163391239.29753976087727
24114.2379493114.869554192129-0.631604892129148
25104.569518114.165084201998-9.59556620199832
26109.0833101113.176747813919-4.09343771391873
27106.9843039115.449593352743-8.4652894527425
28133.6769759118.11692567801615.5600502219842
29124.8537197116.4131803077038.44053939229662
30122.5132349117.0166015176305.49663338236984
31116.8013374118.343499197020-1.54216179701986
32116.0118882120.436808801181-4.42492060118062
33129.7575926120.3993428139459.35824978605516
34125.1973623119.7055383190105.49182398098963
35143.7912139121.91192959356821.8792843064317
36127.9465032121.2240048008736.72249839912677
37130.2962757123.203275596197.09300010380989
38108.4424631125.492666332450-17.0502032324496
39129.3675118128.4839290508740.883582749126271
40143.6797622127.75525657667015.9245056233303
41131.8844618128.6990166511133.18544514888687
42117.6186496128.88798744562-11.2693378456200
43118.9560695133.539649844881-14.5835803448814
44104.8202842134.792025739201-29.9717415392007
45134.624315133.7094774227950.914837577205257
46140.401226133.6867790597886.71444694021177
47143.8005015134.8966296882018.90387181179927
48153.4317823130.29337225708623.1384100429143
49153.2924677126.4491429610126.8433247389899
50127.3149438118.9636023416448.35134145835622
51153.5525216114.20719925612139.3453223438789
52136.9276493119.93279552432116.9948537756787
53131.7730101118.32011713651513.4528929634850
54144.3391845114.65241554416029.6867689558395
55107.4208229116.824212302780-9.40338940278017
56113.6249652117.936432582523-4.31146738252315
57124.2221603121.42993100462.79222929539996
58102.0618557124.045850141977-21.9839944419766
5996.36853348124.544393928381-28.1758604483806
60111.6838488125.768875443761-14.0850266437610


Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
50.1731433060041470.3462866120082950.826856693995853
60.1859608635698010.3719217271396020.814039136430199
70.1622377492104830.3244754984209660.837762250789517
80.09423928994824580.1884785798964920.905760710051754
90.1441898884034120.2883797768068240.855810111596588
100.09863684077875770.1972736815575150.901363159221242
110.05940506960748270.1188101392149650.940594930392517
120.04873103494694040.09746206989388080.95126896505306
130.03686533039716620.07373066079433240.963134669602834
140.02072985793911030.04145971587822060.97927014206089
150.01180955312242100.02361910624484210.98819044687758
160.006263459715270140.01252691943054030.99373654028473
170.004137057582881810.008274115165763620.995862942417118
180.002111986014627230.004223972029254460.997888013985373
190.00121198498525750.0024239699705150.998788015014743
200.0007301068197651630.001460213639530330.999269893180235
210.009406987654106920.01881397530821380.990593012345893
220.008430819165466160.01686163833093230.991569180834534
230.01035181613637530.02070363227275060.989648183863625
240.006697430698025460.01339486139605090.993302569301975
250.005159557783350270.01031911556670050.99484044221665
260.003438603476005370.006877206952010740.996561396523995
270.002658800942103730.005317601884207450.997341199057896
280.007589484270838640.01517896854167730.992410515729161
290.006890066458726630.01378013291745330.993109933541273
300.00503489065339440.01006978130678880.994965109346606
310.003189909198412790.006379818396825570.996810090801587
320.002046422947116970.004092845894233940.997953577052883
330.001699038771695500.003398077543391000.998300961228304
340.001061547697976320.002123095395952640.998938452302024
350.002648153108731980.005296306217463950.997351846891268
360.001528185092567220.003056370185134450.998471814907433
370.000843428627462980.001686857254925960.999156571372537
380.001870682631860450.00374136526372090.99812931736814
390.0009905293040329180.001981058608065840.999009470695967
400.001085128759890660.002170257519781320.99891487124011
410.0005704061218736270.001140812243747250.999429593878126
420.0005181726630396280.001036345326079260.99948182733696
430.0005137087020696920.001027417404139380.99948629129793
440.003174941634371450.00634988326874290.996825058365629
450.001720339550520160.003440679101040310.99827966044948
460.001084091423759420.002168182847518830.99891590857624
470.0009118075472202160.001823615094440430.99908819245278
480.009114889170979070.01822977834195810.99088511082902
490.3106533945353440.6213067890706890.689346605464656
500.2329914742256110.4659829484512230.767008525774389
510.3772623624399200.7545247248798410.62273763756008
520.464006339666240.928012679332480.53599366033376
530.4173815686136550.834763137227310.582618431386345
540.6827835027477060.6344329945045880.317216497252294
550.590962065179490.818075869641020.40903793482051


Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level230.450980392156863NOK
5% type I error level350.686274509803922NOK
10% type I error level370.725490196078431NOK
 
Charts produced by software:
http://www.freestatistics.org/blog/date/2009/Nov/20/t1258731594ee7k6cf46ar7un1/10qzey1258731540.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/20/t1258731594ee7k6cf46ar7un1/10qzey1258731540.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/20/t1258731594ee7k6cf46ar7un1/17kt81258731540.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/20/t1258731594ee7k6cf46ar7un1/17kt81258731540.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/20/t1258731594ee7k6cf46ar7un1/28uyn1258731540.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/20/t1258731594ee7k6cf46ar7un1/28uyn1258731540.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/20/t1258731594ee7k6cf46ar7un1/36f9v1258731540.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/20/t1258731594ee7k6cf46ar7un1/36f9v1258731540.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/20/t1258731594ee7k6cf46ar7un1/4mq7k1258731540.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/20/t1258731594ee7k6cf46ar7un1/4mq7k1258731540.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/20/t1258731594ee7k6cf46ar7un1/5xoj81258731540.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/20/t1258731594ee7k6cf46ar7un1/5xoj81258731540.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/20/t1258731594ee7k6cf46ar7un1/63n071258731540.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/20/t1258731594ee7k6cf46ar7un1/63n071258731540.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/20/t1258731594ee7k6cf46ar7un1/7e0ae1258731540.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/20/t1258731594ee7k6cf46ar7un1/7e0ae1258731540.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/20/t1258731594ee7k6cf46ar7un1/8gdvj1258731540.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/20/t1258731594ee7k6cf46ar7un1/8gdvj1258731540.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/20/t1258731594ee7k6cf46ar7un1/9prct1258731540.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/20/t1258731594ee7k6cf46ar7un1/9prct1258731540.ps (open in new window)


 
Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
 
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

  • personalize online software applications according to your needs
  • enforce strict security rules with respect to the data that you upload (e.g. statistical data)
  • manage user sessions of online applications
  • alert you about important changes or upgrades in resources or applications

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by