R version 2.9.0 (2009-04-17)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(1.6,0,1.4,1.7,0,1.6,2,0,1.7,2,0,2,2.1,0,2,2.5,0,2.1,2.5,0,2.5,2.6,0,2.5,2.7,0,2.6,3.7,0,2.7,4,0,3.7,5,0,4,5.1,0,5,5.1,0,5.1,5,0,5.1,5.1,0,5,4.7,0,5.1,4.5,0,4.7,4.5,0,4.5,4.6,0,4.5,4.6,0,4.6,4.6,0,4.6,4.6,0,4.6,5.3,0,4.6,5.4,0,5.3,5.3,0,5.4,5.2,0,5.3,5,0,5.2,4.2,0,5,4.3,0,4.2,4.3,0,4.3,4.3,0,4.3,4,0,4.3,4,0,4,4.1,0,4,4.4,0,4.1,3.6,0,4.4,3.7,0,3.6,3.8,0,3.7,3.3,0,3.8,3.3,0,3.3,3.3,0,3.3,3.5,0,3.3,3.3,0,3.5,3.3,0,3.3,3.4,0,3.3,3.4,0,3.4,5.2,0,3.4,5.3,0,5.2,4.8,1,5.3,5,1,4.8,4.6,1,5,4.6,1,4.6,3.5,1,4.6,3.5,1,3.5),dim=c(3,55),dimnames=list(c('IndGez','InvlMex','IndGez-1'),1:55))
>  y <- array(NA,dim=c(3,55),dimnames=list(c('IndGez','InvlMex','IndGez-1'),1:55))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'No Linear Trend'
> par2 = 'Include Monthly Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
	The following object(s) are masked from package:base :
	 as.Date.numeric 
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
   IndGez InvlMex IndGez-1 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11
1     1.6       0      1.4  1  0  0  0  0  0  0  0  0   0   0
2     1.7       0      1.6  0  1  0  0  0  0  0  0  0   0   0
3     2.0       0      1.7  0  0  1  0  0  0  0  0  0   0   0
4     2.0       0      2.0  0  0  0  1  0  0  0  0  0   0   0
5     2.1       0      2.0  0  0  0  0  1  0  0  0  0   0   0
6     2.5       0      2.1  0  0  0  0  0  1  0  0  0   0   0
7     2.5       0      2.5  0  0  0  0  0  0  1  0  0   0   0
8     2.6       0      2.5  0  0  0  0  0  0  0  1  0   0   0
9     2.7       0      2.6  0  0  0  0  0  0  0  0  1   0   0
10    3.7       0      2.7  0  0  0  0  0  0  0  0  0   1   0
11    4.0       0      3.7  0  0  0  0  0  0  0  0  0   0   1
12    5.0       0      4.0  0  0  0  0  0  0  0  0  0   0   0
13    5.1       0      5.0  1  0  0  0  0  0  0  0  0   0   0
14    5.1       0      5.1  0  1  0  0  0  0  0  0  0   0   0
15    5.0       0      5.1  0  0  1  0  0  0  0  0  0   0   0
16    5.1       0      5.0  0  0  0  1  0  0  0  0  0   0   0
17    4.7       0      5.1  0  0  0  0  1  0  0  0  0   0   0
18    4.5       0      4.7  0  0  0  0  0  1  0  0  0   0   0
19    4.5       0      4.5  0  0  0  0  0  0  1  0  0   0   0
20    4.6       0      4.5  0  0  0  0  0  0  0  1  0   0   0
21    4.6       0      4.6  0  0  0  0  0  0  0  0  1   0   0
22    4.6       0      4.6  0  0  0  0  0  0  0  0  0   1   0
23    4.6       0      4.6  0  0  0  0  0  0  0  0  0   0   1
24    5.3       0      4.6  0  0  0  0  0  0  0  0  0   0   0
25    5.4       0      5.3  1  0  0  0  0  0  0  0  0   0   0
26    5.3       0      5.4  0  1  0  0  0  0  0  0  0   0   0
27    5.2       0      5.3  0  0  1  0  0  0  0  0  0   0   0
28    5.0       0      5.2  0  0  0  1  0  0  0  0  0   0   0
29    4.2       0      5.0  0  0  0  0  1  0  0  0  0   0   0
30    4.3       0      4.2  0  0  0  0  0  1  0  0  0   0   0
31    4.3       0      4.3  0  0  0  0  0  0  1  0  0   0   0
32    4.3       0      4.3  0  0  0  0  0  0  0  1  0   0   0
33    4.0       0      4.3  0  0  0  0  0  0  0  0  1   0   0
34    4.0       0      4.0  0  0  0  0  0  0  0  0  0   1   0
35    4.1       0      4.0  0  0  0  0  0  0  0  0  0   0   1
36    4.4       0      4.1  0  0  0  0  0  0  0  0  0   0   0
37    3.6       0      4.4  1  0  0  0  0  0  0  0  0   0   0
38    3.7       0      3.6  0  1  0  0  0  0  0  0  0   0   0
39    3.8       0      3.7  0  0  1  0  0  0  0  0  0   0   0
40    3.3       0      3.8  0  0  0  1  0  0  0  0  0   0   0
41    3.3       0      3.3  0  0  0  0  1  0  0  0  0   0   0
42    3.3       0      3.3  0  0  0  0  0  1  0  0  0   0   0
43    3.5       0      3.3  0  0  0  0  0  0  1  0  0   0   0
44    3.3       0      3.5  0  0  0  0  0  0  0  1  0   0   0
45    3.3       0      3.3  0  0  0  0  0  0  0  0  1   0   0
46    3.4       0      3.3  0  0  0  0  0  0  0  0  0   1   0
47    3.4       0      3.4  0  0  0  0  0  0  0  0  0   0   1
48    5.2       0      3.4  0  0  0  0  0  0  0  0  0   0   0
49    5.3       0      5.2  1  0  0  0  0  0  0  0  0   0   0
50    4.8       1      5.3  0  1  0  0  0  0  0  0  0   0   0
51    5.0       1      4.8  0  0  1  0  0  0  0  0  0   0   0
52    4.6       1      5.0  0  0  0  1  0  0  0  0  0   0   0
53    4.6       1      4.6  0  0  0  0  1  0  0  0  0   0   0
54    3.5       1      4.6  0  0  0  0  0  1  0  0  0   0   0
55    3.5       1      3.5  0  0  0  0  0  0  1  0  0   0   0
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)      InvlMex   `IndGez-1`           M1           M2           M3  
     1.4244      -0.1672       0.8821      -0.9823      -0.9759      -0.8254  
         M4           M5           M6           M7           M8           M9  
    -1.0959      -1.1395      -1.1054      -0.9243      -0.9883      -1.0383  
        M10          M11  
    -0.7192      -0.8618  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.72350 -0.15822  0.02036  0.12834  0.77634 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.42438    0.23421   6.082 3.31e-07 ***
InvlMex     -0.16723    0.15041  -1.112 0.272681    
`IndGez-1`   0.88214    0.04239  20.808  < 2e-16 ***
M1          -0.98230    0.21547  -4.559 4.58e-05 ***
M2          -0.97593    0.21722  -4.493 5.64e-05 ***
M3          -0.82536    0.21724  -3.799 0.000473 ***
M4          -1.09593    0.21722  -5.045 9.70e-06 ***
M5          -1.13950    0.21737  -5.242 5.13e-06 ***
M6          -1.10543    0.21791  -5.073 8.87e-06 ***
M7          -0.92429    0.21855  -4.229 0.000128 ***
M8          -0.98830    0.22730  -4.348 8.86e-05 ***
M9          -1.03830    0.22730  -4.568 4.45e-05 ***
M10         -0.71920    0.22744  -3.162 0.002945 ** 
M11         -0.86179    0.22692  -3.798 0.000475 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 0.3209 on 41 degrees of freedom
Multiple R-squared: 0.9258,	Adjusted R-squared: 0.9023 
F-statistic: 39.36 on 13 and 41 DF,  p-value: < 2.2e-16 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
              [,1]         [,2]      [,3]
 [1,] 0.1788803412 0.3577606823 0.8211197
 [2,] 0.1811033077 0.3622066155 0.8188967
 [3,] 0.0977050454 0.1954100908 0.9022950
 [4,] 0.0513025329 0.1026050659 0.9486975
 [5,] 0.0231229580 0.0462459161 0.9768770
 [6,] 0.1341288884 0.2682577767 0.8658711
 [7,] 0.0854344386 0.1708688772 0.9145656
 [8,] 0.0551698136 0.1103396272 0.9448302
 [9,] 0.0384806594 0.0769613187 0.9615193
[10,] 0.0203123530 0.0406247060 0.9796876
[11,] 0.0097297036 0.0194594072 0.9902703
[12,] 0.0052893671 0.0105787342 0.9947106
[13,] 0.0123146804 0.0246293609 0.9876853
[14,] 0.0097327933 0.0194655867 0.9902672
[15,] 0.0044976245 0.0089952490 0.9955024
[16,] 0.0022275564 0.0044551127 0.9977724
[17,] 0.0012394802 0.0024789603 0.9987605
[18,] 0.0011138437 0.0022276873 0.9988862
[19,] 0.0004397941 0.0008795882 0.9995602
[20,] 0.0233682984 0.0467365967 0.9766317
[21,] 0.1957035673 0.3914071347 0.8042964
[22,] 0.1152942106 0.2305884212 0.8847058
> postscript(file="/var/www/html/rcomp/tmp/1rnjk1259095591.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/26f3v1259095591.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/3lsyv1259095591.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/4nhcb1259095591.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/5vemt1259095591.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 55 
Frequency = 1 
           1            2            3            4            5            6 
-0.077076065 -0.159878952 -0.098664375 -0.092735447  0.050836306  0.328551110 
           7            8            9           10           11           12 
-0.205447982 -0.041430517  0.020355360  0.613034174  0.173481778  0.047053531 
          13           14           15           16           17           18 
 0.247215485  0.152626721 -0.097944578  0.360840845 -0.083801526  0.034983896 
          19           20           21           22           23           24 
 0.030269546  0.194287011  0.156072887 -0.163034174 -0.020445334 -0.182231211 
          25           26           27           28           29           30 
 0.282573114  0.087984350 -0.074372825  0.084412597 -0.495587403  0.276054514 
          31           32           33           34           35           36 
 0.006697793  0.070715258 -0.179284742 -0.233749433  0.008839407 -0.641160593 
          37           38           39           40           41           42 
-0.723499773  0.075838575 -0.062946847 -0.380589672  0.104052699  0.069981627 
          43           44           45           46           47           48 
 0.088839029 -0.223571753  0.002856494 -0.216250567 -0.161875851  0.776338273 
          49           50           51           52           53           54 
 0.270787238 -0.156570694  0.333928625  0.028071677  0.424499924 -0.709571148 
          55 
 0.079641614 
> postscript(file="/var/www/html/rcomp/tmp/6gdkz1259095591.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 55 
Frequency = 1 
   lag(myerror, k = 1)      myerror
 0        -0.077076065           NA
 1        -0.159878952 -0.077076065
 2        -0.098664375 -0.159878952
 3        -0.092735447 -0.098664375
 4         0.050836306 -0.092735447
 5         0.328551110  0.050836306
 6        -0.205447982  0.328551110
 7        -0.041430517 -0.205447982
 8         0.020355360 -0.041430517
 9         0.613034174  0.020355360
10         0.173481778  0.613034174
11         0.047053531  0.173481778
12         0.247215485  0.047053531
13         0.152626721  0.247215485
14        -0.097944578  0.152626721
15         0.360840845 -0.097944578
16        -0.083801526  0.360840845
17         0.034983896 -0.083801526
18         0.030269546  0.034983896
19         0.194287011  0.030269546
20         0.156072887  0.194287011
21        -0.163034174  0.156072887
22        -0.020445334 -0.163034174
23        -0.182231211 -0.020445334
24         0.282573114 -0.182231211
25         0.087984350  0.282573114
26        -0.074372825  0.087984350
27         0.084412597 -0.074372825
28        -0.495587403  0.084412597
29         0.276054514 -0.495587403
30         0.006697793  0.276054514
31         0.070715258  0.006697793
32        -0.179284742  0.070715258
33        -0.233749433 -0.179284742
34         0.008839407 -0.233749433
35        -0.641160593  0.008839407
36        -0.723499773 -0.641160593
37         0.075838575 -0.723499773
38        -0.062946847  0.075838575
39        -0.380589672 -0.062946847
40         0.104052699 -0.380589672
41         0.069981627  0.104052699
42         0.088839029  0.069981627
43        -0.223571753  0.088839029
44         0.002856494 -0.223571753
45        -0.216250567  0.002856494
46        -0.161875851 -0.216250567
47         0.776338273 -0.161875851
48         0.270787238  0.776338273
49        -0.156570694  0.270787238
50         0.333928625 -0.156570694
51         0.028071677  0.333928625
52         0.424499924  0.028071677
53        -0.709571148  0.424499924
54         0.079641614 -0.709571148
55                  NA  0.079641614
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)      myerror
 [1,]        -0.159878952 -0.077076065
 [2,]        -0.098664375 -0.159878952
 [3,]        -0.092735447 -0.098664375
 [4,]         0.050836306 -0.092735447
 [5,]         0.328551110  0.050836306
 [6,]        -0.205447982  0.328551110
 [7,]        -0.041430517 -0.205447982
 [8,]         0.020355360 -0.041430517
 [9,]         0.613034174  0.020355360
[10,]         0.173481778  0.613034174
[11,]         0.047053531  0.173481778
[12,]         0.247215485  0.047053531
[13,]         0.152626721  0.247215485
[14,]        -0.097944578  0.152626721
[15,]         0.360840845 -0.097944578
[16,]        -0.083801526  0.360840845
[17,]         0.034983896 -0.083801526
[18,]         0.030269546  0.034983896
[19,]         0.194287011  0.030269546
[20,]         0.156072887  0.194287011
[21,]        -0.163034174  0.156072887
[22,]        -0.020445334 -0.163034174
[23,]        -0.182231211 -0.020445334
[24,]         0.282573114 -0.182231211
[25,]         0.087984350  0.282573114
[26,]        -0.074372825  0.087984350
[27,]         0.084412597 -0.074372825
[28,]        -0.495587403  0.084412597
[29,]         0.276054514 -0.495587403
[30,]         0.006697793  0.276054514
[31,]         0.070715258  0.006697793
[32,]        -0.179284742  0.070715258
[33,]        -0.233749433 -0.179284742
[34,]         0.008839407 -0.233749433
[35,]        -0.641160593  0.008839407
[36,]        -0.723499773 -0.641160593
[37,]         0.075838575 -0.723499773
[38,]        -0.062946847  0.075838575
[39,]        -0.380589672 -0.062946847
[40,]         0.104052699 -0.380589672
[41,]         0.069981627  0.104052699
[42,]         0.088839029  0.069981627
[43,]        -0.223571753  0.088839029
[44,]         0.002856494 -0.223571753
[45,]        -0.216250567  0.002856494
[46,]        -0.161875851 -0.216250567
[47,]         0.776338273 -0.161875851
[48,]         0.270787238  0.776338273
[49,]        -0.156570694  0.270787238
[50,]         0.333928625 -0.156570694
[51,]         0.028071677  0.333928625
[52,]         0.424499924  0.028071677
[53,]        -0.709571148  0.424499924
[54,]         0.079641614 -0.709571148
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)      myerror
1         -0.159878952 -0.077076065
2         -0.098664375 -0.159878952
3         -0.092735447 -0.098664375
4          0.050836306 -0.092735447
5          0.328551110  0.050836306
6         -0.205447982  0.328551110
7         -0.041430517 -0.205447982
8          0.020355360 -0.041430517
9          0.613034174  0.020355360
10         0.173481778  0.613034174
11         0.047053531  0.173481778
12         0.247215485  0.047053531
13         0.152626721  0.247215485
14        -0.097944578  0.152626721
15         0.360840845 -0.097944578
16        -0.083801526  0.360840845
17         0.034983896 -0.083801526
18         0.030269546  0.034983896
19         0.194287011  0.030269546
20         0.156072887  0.194287011
21        -0.163034174  0.156072887
22        -0.020445334 -0.163034174
23        -0.182231211 -0.020445334
24         0.282573114 -0.182231211
25         0.087984350  0.282573114
26        -0.074372825  0.087984350
27         0.084412597 -0.074372825
28        -0.495587403  0.084412597
29         0.276054514 -0.495587403
30         0.006697793  0.276054514
31         0.070715258  0.006697793
32        -0.179284742  0.070715258
33        -0.233749433 -0.179284742
34         0.008839407 -0.233749433
35        -0.641160593  0.008839407
36        -0.723499773 -0.641160593
37         0.075838575 -0.723499773
38        -0.062946847  0.075838575
39        -0.380589672 -0.062946847
40         0.104052699 -0.380589672
41         0.069981627  0.104052699
42         0.088839029  0.069981627
43        -0.223571753  0.088839029
44         0.002856494 -0.223571753
45        -0.216250567  0.002856494
46        -0.161875851 -0.216250567
47         0.776338273 -0.161875851
48         0.270787238  0.776338273
49        -0.156570694  0.270787238
50         0.333928625 -0.156570694
51         0.028071677  0.333928625
52         0.424499924  0.028071677
53        -0.709571148  0.424499924
54         0.079641614 -0.709571148
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/7rwgu1259095591.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/8vwjq1259095591.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/9dieg1259095591.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/html/rcomp/tmp/10kj2u1259095591.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/11h8gl1259095591.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/12yczl1259095591.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/13bymh1259095591.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/14mwxa1259095591.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/15jlco1259095591.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/160r7w1259095591.tab") 
+ }
> 
> system("convert tmp/1rnjk1259095591.ps tmp/1rnjk1259095591.png")
> system("convert tmp/26f3v1259095591.ps tmp/26f3v1259095591.png")
> system("convert tmp/3lsyv1259095591.ps tmp/3lsyv1259095591.png")
> system("convert tmp/4nhcb1259095591.ps tmp/4nhcb1259095591.png")
> system("convert tmp/5vemt1259095591.ps tmp/5vemt1259095591.png")
> system("convert tmp/6gdkz1259095591.ps tmp/6gdkz1259095591.png")
> system("convert tmp/7rwgu1259095591.ps tmp/7rwgu1259095591.png")
> system("convert tmp/8vwjq1259095591.ps tmp/8vwjq1259095591.png")
> system("convert tmp/9dieg1259095591.ps tmp/9dieg1259095591.png")
> system("convert tmp/10kj2u1259095591.ps tmp/10kj2u1259095591.png")
> 
> 
> proc.time()
   user  system elapsed 
  2.335   1.540   2.756