R version 2.9.0 (2009-04-17)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(9.5
+ ,7.8
+ ,9.2
+ ,9.2
+ ,10.9
+ ,9.6
+ ,7.8
+ ,9.5
+ ,9.2
+ ,10
+ ,9.5
+ ,7.8
+ ,9.6
+ ,9.5
+ ,9.2
+ ,9.1
+ ,7.5
+ ,9.5
+ ,9.6
+ ,9.2
+ ,8.9
+ ,7.5
+ ,9.1
+ ,9.5
+ ,9.5
+ ,9
+ ,7.1
+ ,8.9
+ ,9.1
+ ,9.6
+ ,10.1
+ ,7.5
+ ,9
+ ,8.9
+ ,9.5
+ ,10.3
+ ,7.5
+ ,10.1
+ ,9
+ ,9.1
+ ,10.2
+ ,7.6
+ ,10.3
+ ,10.1
+ ,8.9
+ ,9.6
+ ,7.7
+ ,10.2
+ ,10.3
+ ,9
+ ,9.2
+ ,7.7
+ ,9.6
+ ,10.2
+ ,10.1
+ ,9.3
+ ,7.9
+ ,9.2
+ ,9.6
+ ,10.3
+ ,9.4
+ ,8.1
+ ,9.3
+ ,9.2
+ ,10.2
+ ,9.4
+ ,8.2
+ ,9.4
+ ,9.3
+ ,9.6
+ ,9.2
+ ,8.2
+ ,9.4
+ ,9.4
+ ,9.2
+ ,9
+ ,8.2
+ ,9.2
+ ,9.4
+ ,9.3
+ ,9
+ ,7.9
+ ,9
+ ,9.2
+ ,9.4
+ ,9
+ ,7.3
+ ,9
+ ,9
+ ,9.4
+ ,9.8
+ ,6.9
+ ,9
+ ,9
+ ,9.2
+ ,10
+ ,6.6
+ ,9.8
+ ,9
+ ,9
+ ,9.8
+ ,6.7
+ ,10
+ ,9.8
+ ,9
+ ,9.3
+ ,6.9
+ ,9.8
+ ,10
+ ,9
+ ,9
+ ,7
+ ,9.3
+ ,9.8
+ ,9.8
+ ,9
+ ,7.1
+ ,9
+ ,9.3
+ ,10
+ ,9.1
+ ,7.2
+ ,9
+ ,9
+ ,9.8
+ ,9.1
+ ,7.1
+ ,9.1
+ ,9
+ ,9.3
+ ,9.1
+ ,6.9
+ ,9.1
+ ,9.1
+ ,9
+ ,9.2
+ ,7
+ ,9.1
+ ,9.1
+ ,9
+ ,8.8
+ ,6.8
+ ,9.2
+ ,9.1
+ ,9.1
+ ,8.3
+ ,6.4
+ ,8.8
+ ,9.2
+ ,9.1
+ ,8.4
+ ,6.7
+ ,8.3
+ ,8.8
+ ,9.1
+ ,8.1
+ ,6.6
+ ,8.4
+ ,8.3
+ ,9.2
+ ,7.7
+ ,6.4
+ ,8.1
+ ,8.4
+ ,8.8
+ ,7.9
+ ,6.3
+ ,7.7
+ ,8.1
+ ,8.3
+ ,7.9
+ ,6.2
+ ,7.9
+ ,7.7
+ ,8.4
+ ,8
+ ,6.5
+ ,7.9
+ ,7.9
+ ,8.1
+ ,7.9
+ ,6.8
+ ,8
+ ,7.9
+ ,7.7
+ ,7.6
+ ,6.8
+ ,7.9
+ ,8
+ ,7.9
+ ,7.1
+ ,6.4
+ ,7.6
+ ,7.9
+ ,7.9
+ ,6.8
+ ,6.1
+ ,7.1
+ ,7.6
+ ,8
+ ,6.5
+ ,5.8
+ ,6.8
+ ,7.1
+ ,7.9
+ ,6.9
+ ,6.1
+ ,6.5
+ ,6.8
+ ,7.6
+ ,8.2
+ ,7.2
+ ,6.9
+ ,6.5
+ ,7.1
+ ,8.7
+ ,7.3
+ ,8.2
+ ,6.9
+ ,6.8
+ ,8.3
+ ,6.9
+ ,8.7
+ ,8.2
+ ,6.5
+ ,7.9
+ ,6.1
+ ,8.3
+ ,8.7
+ ,6.9
+ ,7.5
+ ,5.8
+ ,7.9
+ ,8.3
+ ,8.2
+ ,7.8
+ ,6.2
+ ,7.5
+ ,7.9
+ ,8.7
+ ,8.3
+ ,7.1
+ ,7.8
+ ,7.5
+ ,8.3
+ ,8.4
+ ,7.7
+ ,8.3
+ ,7.8
+ ,7.9
+ ,8.2
+ ,7.9
+ ,8.4
+ ,8.3
+ ,7.5
+ ,7.7
+ ,7.7
+ ,8.2
+ ,8.4
+ ,7.8
+ ,7.2
+ ,7.4
+ ,7.7
+ ,8.2
+ ,8.3
+ ,7.3
+ ,7.5
+ ,7.2
+ ,7.7
+ ,8.4
+ ,8.1
+ ,8
+ ,7.3
+ ,7.2
+ ,8.2
+ ,8.5
+ ,8.1
+ ,8.1
+ ,7.3
+ ,7.7)
+ ,dim=c(5
+ ,56)
+ ,dimnames=list(c('Y[t]'
+ ,'X[t]'
+ ,'Y1'
+ ,'Y2'
+ ,'Y4')
+ ,1:56))
>  y <- array(NA,dim=c(5,56),dimnames=list(c('Y[t]','X[t]','Y1','Y2','Y4'),1:56))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'Linear Trend'
> par2 = 'Include Monthly Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
	The following object(s) are masked from package:base :
	 as.Date.numeric 
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
   Y[t] X[t]   Y1   Y2   Y4 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11  t
1   9.5  7.8  9.2  9.2 10.9  1  0  0  0  0  0  0  0  0   0   0  1
2   9.6  7.8  9.5  9.2 10.0  0  1  0  0  0  0  0  0  0   0   0  2
3   9.5  7.8  9.6  9.5  9.2  0  0  1  0  0  0  0  0  0   0   0  3
4   9.1  7.5  9.5  9.6  9.2  0  0  0  1  0  0  0  0  0   0   0  4
5   8.9  7.5  9.1  9.5  9.5  0  0  0  0  1  0  0  0  0   0   0  5
6   9.0  7.1  8.9  9.1  9.6  0  0  0  0  0  1  0  0  0   0   0  6
7  10.1  7.5  9.0  8.9  9.5  0  0  0  0  0  0  1  0  0   0   0  7
8  10.3  7.5 10.1  9.0  9.1  0  0  0  0  0  0  0  1  0   0   0  8
9  10.2  7.6 10.3 10.1  8.9  0  0  0  0  0  0  0  0  1   0   0  9
10  9.6  7.7 10.2 10.3  9.0  0  0  0  0  0  0  0  0  0   1   0 10
11  9.2  7.7  9.6 10.2 10.1  0  0  0  0  0  0  0  0  0   0   1 11
12  9.3  7.9  9.2  9.6 10.3  0  0  0  0  0  0  0  0  0   0   0 12
13  9.4  8.1  9.3  9.2 10.2  1  0  0  0  0  0  0  0  0   0   0 13
14  9.4  8.2  9.4  9.3  9.6  0  1  0  0  0  0  0  0  0   0   0 14
15  9.2  8.2  9.4  9.4  9.2  0  0  1  0  0  0  0  0  0   0   0 15
16  9.0  8.2  9.2  9.4  9.3  0  0  0  1  0  0  0  0  0   0   0 16
17  9.0  7.9  9.0  9.2  9.4  0  0  0  0  1  0  0  0  0   0   0 17
18  9.0  7.3  9.0  9.0  9.4  0  0  0  0  0  1  0  0  0   0   0 18
19  9.8  6.9  9.0  9.0  9.2  0  0  0  0  0  0  1  0  0   0   0 19
20 10.0  6.6  9.8  9.0  9.0  0  0  0  0  0  0  0  1  0   0   0 20
21  9.8  6.7 10.0  9.8  9.0  0  0  0  0  0  0  0  0  1   0   0 21
22  9.3  6.9  9.8 10.0  9.0  0  0  0  0  0  0  0  0  0   1   0 22
23  9.0  7.0  9.3  9.8  9.8  0  0  0  0  0  0  0  0  0   0   1 23
24  9.0  7.1  9.0  9.3 10.0  0  0  0  0  0  0  0  0  0   0   0 24
25  9.1  7.2  9.0  9.0  9.8  1  0  0  0  0  0  0  0  0   0   0 25
26  9.1  7.1  9.1  9.0  9.3  0  1  0  0  0  0  0  0  0   0   0 26
27  9.1  6.9  9.1  9.1  9.0  0  0  1  0  0  0  0  0  0   0   0 27
28  9.2  7.0  9.1  9.1  9.0  0  0  0  1  0  0  0  0  0   0   0 28
29  8.8  6.8  9.2  9.1  9.1  0  0  0  0  1  0  0  0  0   0   0 29
30  8.3  6.4  8.8  9.2  9.1  0  0  0  0  0  1  0  0  0   0   0 30
31  8.4  6.7  8.3  8.8  9.1  0  0  0  0  0  0  1  0  0   0   0 31
32  8.1  6.6  8.4  8.3  9.2  0  0  0  0  0  0  0  1  0   0   0 32
33  7.7  6.4  8.1  8.4  8.8  0  0  0  0  0  0  0  0  1   0   0 33
34  7.9  6.3  7.7  8.1  8.3  0  0  0  0  0  0  0  0  0   1   0 34
35  7.9  6.2  7.9  7.7  8.4  0  0  0  0  0  0  0  0  0   0   1 35
36  8.0  6.5  7.9  7.9  8.1  0  0  0  0  0  0  0  0  0   0   0 36
37  7.9  6.8  8.0  7.9  7.7  1  0  0  0  0  0  0  0  0   0   0 37
38  7.6  6.8  7.9  8.0  7.9  0  1  0  0  0  0  0  0  0   0   0 38
39  7.1  6.4  7.6  7.9  7.9  0  0  1  0  0  0  0  0  0   0   0 39
40  6.8  6.1  7.1  7.6  8.0  0  0  0  1  0  0  0  0  0   0   0 40
41  6.5  5.8  6.8  7.1  7.9  0  0  0  0  1  0  0  0  0   0   0 41
42  6.9  6.1  6.5  6.8  7.6  0  0  0  0  0  1  0  0  0   0   0 42
43  8.2  7.2  6.9  6.5  7.1  0  0  0  0  0  0  1  0  0   0   0 43
44  8.7  7.3  8.2  6.9  6.8  0  0  0  0  0  0  0  1  0   0   0 44
45  8.3  6.9  8.7  8.2  6.5  0  0  0  0  0  0  0  0  1   0   0 45
46  7.9  6.1  8.3  8.7  6.9  0  0  0  0  0  0  0  0  0   1   0 46
47  7.5  5.8  7.9  8.3  8.2  0  0  0  0  0  0  0  0  0   0   1 47
48  7.8  6.2  7.5  7.9  8.7  0  0  0  0  0  0  0  0  0   0   0 48
49  8.3  7.1  7.8  7.5  8.3  1  0  0  0  0  0  0  0  0   0   0 49
50  8.4  7.7  8.3  7.8  7.9  0  1  0  0  0  0  0  0  0   0   0 50
51  8.2  7.9  8.4  8.3  7.5  0  0  1  0  0  0  0  0  0   0   0 51
52  7.7  7.7  8.2  8.4  7.8  0  0  0  1  0  0  0  0  0   0   0 52
53  7.2  7.4  7.7  8.2  8.3  0  0  0  0  1  0  0  0  0   0   0 53
54  7.3  7.5  7.2  7.7  8.4  0  0  0  0  0  1  0  0  0   0   0 54
55  8.1  8.0  7.3  7.2  8.2  0  0  0  0  0  0  1  0  0   0   0 55
56  8.5  8.1  8.1  7.3  7.7  0  0  0  0  0  0  0  1  0   0   0 56
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)       `X[t]`           Y1           Y2           Y4           M1  
   0.965170     0.072823     1.510089    -0.842098     0.195263    -0.252072  
         M2           M3           M4           M5           M6           M7  
  -0.377999    -0.311691    -0.291343    -0.361763    -0.114911     0.454983  
         M8           M9          M10          M11            t  
  -0.508264    -0.288690    -0.056675    -0.223600    -0.004503  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
      Min        1Q    Median        3Q       Max 
-0.310875 -0.138179 -0.003834  0.137332  0.306402 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.965170   0.702637   1.374  0.17740    
`X[t]`       0.072823   0.052408   1.390  0.17255    
Y1           1.510089   0.137715  10.965 1.77e-13 ***
Y2          -0.842098   0.150614  -5.591 1.91e-06 ***
Y4           0.195263   0.075751   2.578  0.01384 *  
M1          -0.252072   0.136919  -1.841  0.07323 .  
M2          -0.377999   0.137930  -2.741  0.00921 ** 
M3          -0.311691   0.141870  -2.197  0.03403 *  
M4          -0.291343   0.139356  -2.091  0.04313 *  
M5          -0.361763   0.132293  -2.735  0.00935 ** 
M6          -0.114911   0.131148  -0.876  0.38629    
M7           0.454983   0.135468   3.359  0.00176 ** 
M8          -0.508264   0.177234  -2.868  0.00664 ** 
M9          -0.288690   0.161826  -1.784  0.08221 .  
M10         -0.056675   0.168711  -0.336  0.73872    
M11         -0.223600   0.138730  -1.612  0.11508    
t           -0.004503   0.003520  -1.279  0.20834    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 0.19 on 39 degrees of freedom
Multiple R-squared: 0.9694,	Adjusted R-squared: 0.9568 
F-statistic: 77.15 on 16 and 39 DF,  p-value: < 2.2e-16 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
             [,1]        [,2]       [,3]
 [1,] 0.047790240 0.095580479 0.95220976
 [2,] 0.072605421 0.145210842 0.92739458
 [3,] 0.037029762 0.074059524 0.96297024
 [4,] 0.019843288 0.039686576 0.98015671
 [5,] 0.009125512 0.018251024 0.99087449
 [6,] 0.003061294 0.006122588 0.99693871
 [7,] 0.001179090 0.002358180 0.99882091
 [8,] 0.003074934 0.006149867 0.99692507
 [9,] 0.198052568 0.396105135 0.80194743
[10,] 0.245556812 0.491113624 0.75444319
[11,] 0.200698681 0.401397362 0.79930132
[12,] 0.782883407 0.434233187 0.21711659
[13,] 0.799512560 0.400974880 0.20048744
[14,] 0.877313368 0.245373263 0.12268663
[15,] 0.909330971 0.181338058 0.09066903
[16,] 0.901459044 0.197081911 0.09854096
[17,] 0.804133955 0.391732090 0.19586604
> postscript(file="/var/www/html/rcomp/tmp/19m611259173614.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/20bdm1259173614.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/3qq3k1259173614.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/4p8ez1259173614.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/5vzop1259173614.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 56 
Frequency = 1 
           1            2            3            4            5            6 
-0.050503696 -0.097364323 -0.001338673 -0.160117821  0.176051685  0.008484015 
           7            8            9           10           11           12 
 0.214061938 -0.116971255  0.224018117 -0.310874695  0.067607738 -0.006329964 
          13           14           15           16           17           18 
-0.132640963  0.040864701 -0.058625486  0.008021200  0.218862775 -0.148212194 
          19           20           21           22           23           24 
 0.154579090  0.175157198  0.124464696 -0.147175256  0.147385112 -0.086069392 
          25           26           27           28           29           30 
 0.049646890  0.133981159  0.229529332  0.306402211 -0.174645702 -0.199620511 
          31           32           33           34           35           36 
-0.268652736 -0.185204757 -0.170368892  0.258438672 -0.221233906 -0.135179934 
          37           38           39           40           41           42 
-0.073355330 -0.046759986 -0.210618903 -0.021727820 -0.173454015  0.221325850 
          43           44           45           46           47           48 
 0.116796240  0.009565899 -0.178113921  0.199611280  0.006241056  0.227579290 
          49           50           51           52           53           54 
 0.206853099 -0.030721551  0.041053731 -0.132577770 -0.046814742  0.118022840 
          55           56 
-0.216784533  0.117452913 
> postscript(file="/var/www/html/rcomp/tmp/693jo1259173614.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 56 
Frequency = 1 
   lag(myerror, k = 1)      myerror
 0        -0.050503696           NA
 1        -0.097364323 -0.050503696
 2        -0.001338673 -0.097364323
 3        -0.160117821 -0.001338673
 4         0.176051685 -0.160117821
 5         0.008484015  0.176051685
 6         0.214061938  0.008484015
 7        -0.116971255  0.214061938
 8         0.224018117 -0.116971255
 9        -0.310874695  0.224018117
10         0.067607738 -0.310874695
11        -0.006329964  0.067607738
12        -0.132640963 -0.006329964
13         0.040864701 -0.132640963
14        -0.058625486  0.040864701
15         0.008021200 -0.058625486
16         0.218862775  0.008021200
17        -0.148212194  0.218862775
18         0.154579090 -0.148212194
19         0.175157198  0.154579090
20         0.124464696  0.175157198
21        -0.147175256  0.124464696
22         0.147385112 -0.147175256
23        -0.086069392  0.147385112
24         0.049646890 -0.086069392
25         0.133981159  0.049646890
26         0.229529332  0.133981159
27         0.306402211  0.229529332
28        -0.174645702  0.306402211
29        -0.199620511 -0.174645702
30        -0.268652736 -0.199620511
31        -0.185204757 -0.268652736
32        -0.170368892 -0.185204757
33         0.258438672 -0.170368892
34        -0.221233906  0.258438672
35        -0.135179934 -0.221233906
36        -0.073355330 -0.135179934
37        -0.046759986 -0.073355330
38        -0.210618903 -0.046759986
39        -0.021727820 -0.210618903
40        -0.173454015 -0.021727820
41         0.221325850 -0.173454015
42         0.116796240  0.221325850
43         0.009565899  0.116796240
44        -0.178113921  0.009565899
45         0.199611280 -0.178113921
46         0.006241056  0.199611280
47         0.227579290  0.006241056
48         0.206853099  0.227579290
49        -0.030721551  0.206853099
50         0.041053731 -0.030721551
51        -0.132577770  0.041053731
52        -0.046814742 -0.132577770
53         0.118022840 -0.046814742
54        -0.216784533  0.118022840
55         0.117452913 -0.216784533
56                  NA  0.117452913
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)      myerror
 [1,]        -0.097364323 -0.050503696
 [2,]        -0.001338673 -0.097364323
 [3,]        -0.160117821 -0.001338673
 [4,]         0.176051685 -0.160117821
 [5,]         0.008484015  0.176051685
 [6,]         0.214061938  0.008484015
 [7,]        -0.116971255  0.214061938
 [8,]         0.224018117 -0.116971255
 [9,]        -0.310874695  0.224018117
[10,]         0.067607738 -0.310874695
[11,]        -0.006329964  0.067607738
[12,]        -0.132640963 -0.006329964
[13,]         0.040864701 -0.132640963
[14,]        -0.058625486  0.040864701
[15,]         0.008021200 -0.058625486
[16,]         0.218862775  0.008021200
[17,]        -0.148212194  0.218862775
[18,]         0.154579090 -0.148212194
[19,]         0.175157198  0.154579090
[20,]         0.124464696  0.175157198
[21,]        -0.147175256  0.124464696
[22,]         0.147385112 -0.147175256
[23,]        -0.086069392  0.147385112
[24,]         0.049646890 -0.086069392
[25,]         0.133981159  0.049646890
[26,]         0.229529332  0.133981159
[27,]         0.306402211  0.229529332
[28,]        -0.174645702  0.306402211
[29,]        -0.199620511 -0.174645702
[30,]        -0.268652736 -0.199620511
[31,]        -0.185204757 -0.268652736
[32,]        -0.170368892 -0.185204757
[33,]         0.258438672 -0.170368892
[34,]        -0.221233906  0.258438672
[35,]        -0.135179934 -0.221233906
[36,]        -0.073355330 -0.135179934
[37,]        -0.046759986 -0.073355330
[38,]        -0.210618903 -0.046759986
[39,]        -0.021727820 -0.210618903
[40,]        -0.173454015 -0.021727820
[41,]         0.221325850 -0.173454015
[42,]         0.116796240  0.221325850
[43,]         0.009565899  0.116796240
[44,]        -0.178113921  0.009565899
[45,]         0.199611280 -0.178113921
[46,]         0.006241056  0.199611280
[47,]         0.227579290  0.006241056
[48,]         0.206853099  0.227579290
[49,]        -0.030721551  0.206853099
[50,]         0.041053731 -0.030721551
[51,]        -0.132577770  0.041053731
[52,]        -0.046814742 -0.132577770
[53,]         0.118022840 -0.046814742
[54,]        -0.216784533  0.118022840
[55,]         0.117452913 -0.216784533
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)      myerror
1         -0.097364323 -0.050503696
2         -0.001338673 -0.097364323
3         -0.160117821 -0.001338673
4          0.176051685 -0.160117821
5          0.008484015  0.176051685
6          0.214061938  0.008484015
7         -0.116971255  0.214061938
8          0.224018117 -0.116971255
9         -0.310874695  0.224018117
10         0.067607738 -0.310874695
11        -0.006329964  0.067607738
12        -0.132640963 -0.006329964
13         0.040864701 -0.132640963
14        -0.058625486  0.040864701
15         0.008021200 -0.058625486
16         0.218862775  0.008021200
17        -0.148212194  0.218862775
18         0.154579090 -0.148212194
19         0.175157198  0.154579090
20         0.124464696  0.175157198
21        -0.147175256  0.124464696
22         0.147385112 -0.147175256
23        -0.086069392  0.147385112
24         0.049646890 -0.086069392
25         0.133981159  0.049646890
26         0.229529332  0.133981159
27         0.306402211  0.229529332
28        -0.174645702  0.306402211
29        -0.199620511 -0.174645702
30        -0.268652736 -0.199620511
31        -0.185204757 -0.268652736
32        -0.170368892 -0.185204757
33         0.258438672 -0.170368892
34        -0.221233906  0.258438672
35        -0.135179934 -0.221233906
36        -0.073355330 -0.135179934
37        -0.046759986 -0.073355330
38        -0.210618903 -0.046759986
39        -0.021727820 -0.210618903
40        -0.173454015 -0.021727820
41         0.221325850 -0.173454015
42         0.116796240  0.221325850
43         0.009565899  0.116796240
44        -0.178113921  0.009565899
45         0.199611280 -0.178113921
46         0.006241056  0.199611280
47         0.227579290  0.006241056
48         0.206853099  0.227579290
49        -0.030721551  0.206853099
50         0.041053731 -0.030721551
51        -0.132577770  0.041053731
52        -0.046814742 -0.132577770
53         0.118022840 -0.046814742
54        -0.216784533  0.118022840
55         0.117452913 -0.216784533
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/7kcwh1259173614.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/8mhnc1259173614.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/9ys7r1259173614.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/html/rcomp/tmp/105xbp1259173615.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/11ti1i1259173615.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/12df971259173615.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/13gxrj1259173615.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/14aagn1259173615.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/154x961259173615.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/162thy1259173615.tab") 
+ }
> 
> system("convert tmp/19m611259173614.ps tmp/19m611259173614.png")
> system("convert tmp/20bdm1259173614.ps tmp/20bdm1259173614.png")
> system("convert tmp/3qq3k1259173614.ps tmp/3qq3k1259173614.png")
> system("convert tmp/4p8ez1259173614.ps tmp/4p8ez1259173614.png")
> system("convert tmp/5vzop1259173614.ps tmp/5vzop1259173614.png")
> system("convert tmp/693jo1259173614.ps tmp/693jo1259173614.png")
> system("convert tmp/7kcwh1259173614.ps tmp/7kcwh1259173614.png")
> system("convert tmp/8mhnc1259173614.ps tmp/8mhnc1259173614.png")
> system("convert tmp/9ys7r1259173614.ps tmp/9ys7r1259173614.png")
> system("convert tmp/105xbp1259173615.ps tmp/105xbp1259173615.png")
> 
> 
> proc.time()
   user  system elapsed 
  2.382   1.574   3.748