Home » date » 2009 » Oct » 27 »

ws3 variability Et (Yt/Xt)

*The author of this computation has been verified*
R Software Module: rwasp_variability.wasp (opens new window with default values)
Title produced by software: Variability
Date of computation: Tue, 27 Oct 2009 15:48:05 -0600
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2009/Oct/27/t1256680128uc23qhp5vikena1.htm/, Retrieved Tue, 27 Oct 2009 22:48:48 +0100
 
BibTeX entries for LaTeX users:
@Manual{KEY,
    author = {{YOUR NAME}},
    publisher = {Office for Research Development and Education},
    title = {Statistical Computations at FreeStatistics.org, URL http://www.freestatistics.org/blog/date/2009/Oct/27/t1256680128uc23qhp5vikena1.htm/},
    year = {2009},
}
@Manual{R,
    title = {R: A Language and Environment for Statistical Computing},
    author = {{R Development Core Team}},
    organization = {R Foundation for Statistical Computing},
    address = {Vienna, Austria},
    year = {2009},
    note = {{ISBN} 3-900051-07-0},
    url = {http://www.R-project.org},
}
 
Original text written by user:
 
IsPrivate?
No (this computation is public)
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
-0.023452158 -0.005769231 0.009230769 -0.010180996 0.000000000 0.057109557 0.137651822 0.156730769 0.114909781 0.067932068 -0.004102564 -0.020242915 -0.012820513 0.000000000 -0.012820513 -0.017435898 -0.044102564 0.036836403 0.115897436 0.142564102 0.111336032 0.015984016 -0.035964036 -0.053554041 -0.070275404 -0.084427768 -0.108818011 -0.133208255 -0.091528725 0.002107481 0.189520624 0.284382284 0.231917336 0.117056856 0.054945055 0.036836403 0.033119658 0.050920910 0.088071349 0.083516483 0.063348416 0.066105769 0.022962112 -0.003496504 -0.027644231 0.023199023 0.043424317 0.000000000 -0.069004525 -0.113122172 -0.121394231 -0.116015133 -0.110079576 -0.099621690 -0.091880342 -0.038988409 -0.027870680 0.064312736 0.062334 etc...
 
Output produced by software:


Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24


Variability - Ungrouped Data
Absolute range0.417590539
Relative range (unbiased)4.73184292896043
Relative range (biased)4.77111200833642
Variance (unbiased)0.00778826394324827
Variance (biased)0.00766058748516223
Standard Deviation (unbiased)0.0882511413141398
Standard Deviation (biased)0.08752478212005
Coefficient of Variation (unbiased)5.96831712685261
Coefficient of Variation (biased)5.9191943398407
Mean Squared Error (MSE versus 0)0.00787923114010621
Mean Squared Error (MSE versus Mean)0.00766058748516223
Mean Absolute Deviation from Mean (MAD Mean)0.068399865893577
Mean Absolute Deviation from Median (MAD Median)0.0675595950819672
Median Absolute Deviation from Mean0.0507506399016393
Median Absolute Deviation from Median0.057109557
Mean Squared Deviation from Mean0.00766058748516223
Mean Squared Deviation from Median0.00787923114010621
Interquartile Difference (Weighted Average at Xnp)0.1059188915
Interquartile Difference (Weighted Average at X(n+1)p)0.1053760625
Interquartile Difference (Empirical Distribution Function)0.102336825
Interquartile Difference (Empirical Distribution Function - Averaging)0.102336825
Interquartile Difference (Empirical Distribution Function - Interpolation)0.102336825
Interquartile Difference (Closest Observation)0.10745098
Interquartile Difference (True Basic - Statistics Graphics Toolkit)0.1053760625
Interquartile Difference (MS Excel (old versions))0.1053760625
Semi Interquartile Difference (Weighted Average at Xnp)0.05295944575
Semi Interquartile Difference (Weighted Average at X(n+1)p)0.05268803125
Semi Interquartile Difference (Empirical Distribution Function)0.0511684125
Semi Interquartile Difference (Empirical Distribution Function - Averaging)0.0511684125
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)0.0511684125
Semi Interquartile Difference (Closest Observation)0.05372549
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)0.05268803125
Semi Interquartile Difference (MS Excel (old versions))0.05268803125
Coefficient of Quartile Variation (Weighted Average at Xnp)5.22518486036174
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)4.72854562688653
Coefficient of Quartile Variation (Empirical Distribution Function)4.20101788148090
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)4.20101788148090
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)4.20101788148090
Coefficient of Quartile Variation (Closest Observation)5.58307213419286
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)4.72854562688653
Coefficient of Quartile Variation (MS Excel (old versions))4.72854562688653
Number of all Pairs of Observations1830
Squared Differences between all Pairs of Observations0.0155765278864965
Mean Absolute Differences between all Pairs of Observations0.0987664089661202
Gini Mean Difference0.09876640896612
Leik Measure of Dispersion-0.0457512357901426
Index of Diversity0.409231776511439
Index of Qualitative Variation0.416052306119963
Coefficient of DispersionInf
Observations61
 
Charts produced by software:
 
Parameters (Session):
 
Parameters (R input):
 
R code (references can be found in the software module):
num <- 50
res <- array(NA,dim=c(num,3))
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
iqd <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
iqdiff <- qvalue3 - qvalue1
return(c(iqdiff,iqdiff/2,iqdiff/(qvalue3 + qvalue1)))
}
range <- max(x) - min(x)
lx <- length(x)
biasf <- (lx-1)/lx
varx <- var(x)
bvarx <- varx*biasf
sdx <- sqrt(varx)
mx <- mean(x)
bsdx <- sqrt(bvarx)
x2 <- x*x
mse0 <- sum(x2)/lx
xmm <- x-mx
xmm2 <- xmm*xmm
msem <- sum(xmm2)/lx
axmm <- abs(x - mx)
medx <- median(x)
axmmed <- abs(x - medx)
xmmed <- x - medx
xmmed2 <- xmmed*xmmed
msemed <- sum(xmmed2)/lx
qarr <- array(NA,dim=c(8,3))
for (j in 1:8) {
qarr[j,] <- iqd(x,j)
}
sdpo <- 0
adpo <- 0
for (i in 1:(lx-1)) {
for (j in (i+1):lx) {
ldi <- x[i]-x[j]
aldi <- abs(ldi)
sdpo = sdpo + ldi * ldi
adpo = adpo + aldi
}
}
denom <- (lx*(lx-1)/2)
sdpo = sdpo / denom
adpo = adpo / denom
gmd <- 0
for (i in 1:lx) {
for (j in 1:lx) {
ldi <- abs(x[i]-x[j])
gmd = gmd + ldi
}
}
gmd <- gmd / (lx*(lx-1))
sumx <- sum(x)
pk <- x / sumx
ck <- cumsum(pk)
dk <- array(NA,dim=lx)
for (i in 1:lx) {
if (ck[i] <= 0.5) dk[i] <- ck[i] else dk[i] <- 1 - ck[i]
}
bigd <- sum(dk) * 2 / (lx-1)
iod <- 1 - sum(pk*pk)
res[1,] <- c('Absolute range','http://www.xycoon.com/absolute.htm', range)
res[2,] <- c('Relative range (unbiased)','http://www.xycoon.com/relative.htm', range/sd(x))
res[3,] <- c('Relative range (biased)','http://www.xycoon.com/relative.htm', range/sqrt(varx*biasf))
res[4,] <- c('Variance (unbiased)','http://www.xycoon.com/unbiased.htm', varx)
res[5,] <- c('Variance (biased)','http://www.xycoon.com/biased.htm', bvarx)
res[6,] <- c('Standard Deviation (unbiased)','http://www.xycoon.com/unbiased1.htm', sdx)
res[7,] <- c('Standard Deviation (biased)','http://www.xycoon.com/biased1.htm', bsdx)
res[8,] <- c('Coefficient of Variation (unbiased)','http://www.xycoon.com/variation.htm', sdx/mx)
res[9,] <- c('Coefficient of Variation (biased)','http://www.xycoon.com/variation.htm', bsdx/mx)
res[10,] <- c('Mean Squared Error (MSE versus 0)','http://www.xycoon.com/mse.htm', mse0)
res[11,] <- c('Mean Squared Error (MSE versus Mean)','http://www.xycoon.com/mse.htm', msem)
res[12,] <- c('Mean Absolute Deviation from Mean (MAD Mean)', 'http://www.xycoon.com/mean2.htm', sum(axmm)/lx)
res[13,] <- c('Mean Absolute Deviation from Median (MAD Median)', 'http://www.xycoon.com/median1.htm', sum(axmmed)/lx)
res[14,] <- c('Median Absolute Deviation from Mean', 'http://www.xycoon.com/mean3.htm', median(axmm))
res[15,] <- c('Median Absolute Deviation from Median', 'http://www.xycoon.com/median2.htm', median(axmmed))
res[16,] <- c('Mean Squared Deviation from Mean', 'http://www.xycoon.com/mean1.htm', msem)
res[17,] <- c('Mean Squared Deviation from Median', 'http://www.xycoon.com/median.htm', msemed)
load(file='createtable')
mylink1 <- hyperlink('http://www.xycoon.com/difference.htm','Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[18,] <- c('', mylink2, qarr[1,1])
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[19,] <- c('', mylink2, qarr[2,1])
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[20,] <- c('', mylink2, qarr[3,1])
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[21,] <- c('', mylink2, qarr[4,1])
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[22,] <- c('', mylink2, qarr[5,1])
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_6.htm','(Closest Observation)',''),sep=' ')
res[23,] <- c('', mylink2, qarr[6,1])
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[24,] <- c('', mylink2, qarr[7,1])
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[25,] <- c('', mylink2, qarr[8,1])
mylink1 <- hyperlink('http://www.xycoon.com/deviation.htm','Semi Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[26,] <- c('', mylink2, qarr[1,2])
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[27,] <- c('', mylink2, qarr[2,2])
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[28,] <- c('', mylink2, qarr[3,2])
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[29,] <- c('', mylink2, qarr[4,2])
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[30,] <- c('', mylink2, qarr[5,2])
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_6.htm','(Closest Observation)',''),sep=' ')
res[31,] <- c('', mylink2, qarr[6,2])
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[32,] <- c('', mylink2, qarr[7,2])
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[33,] <- c('', mylink2, qarr[8,2])
mylink1 <- hyperlink('http://www.xycoon.com/variation1.htm','Coefficient of Quartile Variation','')
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[34,] <- c('', mylink2, qarr[1,3])
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[35,] <- c('', mylink2, qarr[2,3])
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[36,] <- c('', mylink2, qarr[3,3])
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[37,] <- c('', mylink2, qarr[4,3])
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[38,] <- c('', mylink2, qarr[5,3])
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_6.htm','(Closest Observation)',''),sep=' ')
res[39,] <- c('', mylink2, qarr[6,3])
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[40,] <- c('', mylink2, qarr[7,3])
mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[41,] <- c('', mylink2, qarr[8,3])
res[42,] <- c('Number of all Pairs of Observations', 'http://www.xycoon.com/pair_numbers.htm', lx*(lx-1)/2)
res[43,] <- c('Squared Differences between all Pairs of Observations', 'http://www.xycoon.com/squared_differences.htm', sdpo)
res[44,] <- c('Mean Absolute Differences between all Pairs of Observations', 'http://www.xycoon.com/mean_abs_differences.htm', adpo)
res[45,] <- c('Gini Mean Difference', 'http://www.xycoon.com/gini_mean_difference.htm', gmd)
res[46,] <- c('Leik Measure of Dispersion', 'http://www.xycoon.com/leiks_d.htm', bigd)
res[47,] <- c('Index of Diversity', 'http://www.xycoon.com/diversity.htm', iod)
res[48,] <- c('Index of Qualitative Variation', 'http://www.xycoon.com/qualitative_variation.htm', iod*lx/(lx-1))
res[49,] <- c('Coefficient of Dispersion', 'http://www.xycoon.com/dispersion.htm', sum(axmm)/lx/medx)
res[50,] <- c('Observations', '', lx)
res
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variability - Ungrouped Data',2,TRUE)
a<-table.row.end(a)
for (i in 1:num) {
a<-table.row.start(a)
if (res[i,1] != '') {
a<-table.element(a,hyperlink(res[i,2],res[i,1],''),header=TRUE)
} else {
a<-table.element(a,res[i,2],header=TRUE)
}
a<-table.element(a,res[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

  • personalize online software applications according to your needs
  • enforce strict security rules with respect to the data that you upload (e.g. statistical data)
  • manage user sessions of online applications
  • alert you about important changes or upgrades in resources or applications

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by