R version 2.9.0 (2009-04-17)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(11
+ ,0
+ ,8
+ ,17
+ ,2
+ ,6
+ ,10
+ ,-2
+ ,3
+ ,23
+ ,3
+ ,7
+ ,9
+ ,-4
+ ,3
+ ,24
+ ,1
+ ,4
+ ,8
+ ,-4
+ ,7
+ ,27
+ ,1
+ ,3
+ ,7
+ ,-7
+ ,4
+ ,31
+ ,0
+ ,0
+ ,6
+ ,-9
+ ,-4
+ ,40
+ ,1
+ ,6
+ ,5
+ ,-13
+ ,-6
+ ,47
+ ,-1
+ ,3
+ ,4
+ ,-8
+ ,8
+ ,43
+ ,2
+ ,1
+ ,3
+ ,-13
+ ,2
+ ,60
+ ,2
+ ,6
+ ,2
+ ,-15
+ ,-1
+ ,64
+ ,0
+ ,5
+ ,1
+ ,-15
+ ,-2
+ ,65
+ ,1
+ ,7
+ ,12
+ ,-15
+ ,0
+ ,65
+ ,1
+ ,4
+ ,11
+ ,-10
+ ,10
+ ,55
+ ,3
+ ,3
+ ,10
+ ,-12
+ ,3
+ ,57
+ ,3
+ ,6
+ ,9
+ ,-11
+ ,6
+ ,57
+ ,1
+ ,6
+ ,8
+ ,-11
+ ,7
+ ,57
+ ,1
+ ,5
+ ,7
+ ,-17
+ ,-4
+ ,65
+ ,-2
+ ,2
+ ,6
+ ,-18
+ ,-5
+ ,69
+ ,1
+ ,3
+ ,5
+ ,-19
+ ,-7
+ ,70
+ ,1
+ ,-2
+ ,4
+ ,-22
+ ,-10
+ ,71
+ ,-1
+ ,-4
+ ,3
+ ,-24
+ ,-21
+ ,71
+ ,-4
+ ,0
+ ,2
+ ,-24
+ ,-22
+ ,73
+ ,-2
+ ,1
+ ,1
+ ,-20
+ ,-16
+ ,68
+ ,-1
+ ,4
+ ,12
+ ,-25
+ ,-25
+ ,65
+ ,-5
+ ,-3
+ ,11
+ ,-22
+ ,-22
+ ,57
+ ,-4
+ ,-3
+ ,10
+ ,-17
+ ,-22
+ ,41
+ ,-5
+ ,0
+ ,9
+ ,-9
+ ,-19
+ ,21
+ ,0
+ ,6
+ ,8
+ ,-11
+ ,-21
+ ,21
+ ,-2
+ ,-1
+ ,7
+ ,-13
+ ,-31
+ ,17
+ ,-4
+ ,0
+ ,6
+ ,-11
+ ,-28
+ ,9
+ ,-6
+ ,-1
+ ,5
+ ,-9
+ ,-23
+ ,11
+ ,-2
+ ,1
+ ,4
+ ,-7
+ ,-17
+ ,6
+ ,-2
+ ,-4
+ ,3
+ ,-3
+ ,-12
+ ,-2
+ ,-2
+ ,-1
+ ,2
+ ,-3
+ ,-14
+ ,0
+ ,1
+ ,-1
+ ,1
+ ,-6
+ ,-18
+ ,5
+ ,-2
+ ,0
+ ,12
+ ,-4
+ ,-16
+ ,3
+ ,0
+ ,3
+ ,11
+ ,-8
+ ,-22
+ ,7
+ ,-1
+ ,0
+ ,10
+ ,-1
+ ,-9
+ ,4
+ ,2
+ ,8
+ ,9
+ ,-2
+ ,-10
+ ,8
+ ,3
+ ,8
+ ,8
+ ,-2
+ ,-10
+ ,9
+ ,2
+ ,8
+ ,7
+ ,-1
+ ,0
+ ,14
+ ,3
+ ,8
+ ,6
+ ,1
+ ,3
+ ,12
+ ,4
+ ,11
+ ,5
+ ,2
+ ,2
+ ,12
+ ,5
+ ,13
+ ,4
+ ,2
+ ,4
+ ,7
+ ,5
+ ,5
+ ,3
+ ,-1
+ ,-3
+ ,15
+ ,4
+ ,12
+ ,2
+ ,1
+ ,0
+ ,14
+ ,5
+ ,13
+ ,1
+ ,-1
+ ,-1
+ ,19
+ ,6
+ ,9
+ ,12
+ ,-8
+ ,-7
+ ,39
+ ,4
+ ,11
+ ,11
+ ,1
+ ,2
+ ,12
+ ,6
+ ,7
+ ,10
+ ,2
+ ,3
+ ,11
+ ,6
+ ,12
+ ,9
+ ,-2
+ ,-3
+ ,17
+ ,3
+ ,11
+ ,8
+ ,-2
+ ,-5
+ ,16
+ ,5
+ ,10
+ ,7
+ ,-2
+ ,0
+ ,25
+ ,5
+ ,13
+ ,6
+ ,-2
+ ,-3
+ ,24
+ ,5
+ ,14
+ ,5
+ ,-6
+ ,-7
+ ,28
+ ,3
+ ,10
+ ,4
+ ,-4
+ ,-7
+ ,25
+ ,5
+ ,13
+ ,3
+ ,-5
+ ,-7
+ ,31
+ ,5
+ ,12
+ ,2
+ ,-2
+ ,-4
+ ,24
+ ,6
+ ,13
+ ,1
+ ,-1
+ ,-3
+ ,24
+ ,6
+ ,17
+ ,12
+ ,-5
+ ,-6
+ ,33
+ ,5
+ ,15)
+ ,dim=c(6
+ ,60)
+ ,dimnames=list(c('maand'
+ ,'indicator'
+ ,'economie'
+ ,'werkloosheid'
+ ,'financiƫn'
+ ,'spaarvermogen')
+ ,1:60))
>  y <- array(NA,dim=c(6,60),dimnames=list(c('maand','indicator','economie','werkloosheid','financiƫn','spaarvermogen'),1:60))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'Linear Trend'
> par2 = 'Do not include Seasonal Dummies'
> par1 = '4'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
	The following object(s) are masked from package:base :
	 as.Date.numeric 
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
   werkloosheid maand indicator economie financi\303\253n spaarvermogen  t
1            17    11         0        8                2             6  1
2            23    10        -2        3                3             7  2
3            24     9        -4        3                1             4  3
4            27     8        -4        7                1             3  4
5            31     7        -7        4                0             0  5
6            40     6        -9       -4                1             6  6
7            47     5       -13       -6               -1             3  7
8            43     4        -8        8                2             1  8
9            60     3       -13        2                2             6  9
10           64     2       -15       -1                0             5 10
11           65     1       -15       -2                1             7 11
12           65    12       -15        0                1             4 12
13           55    11       -10       10                3             3 13
14           57    10       -12        3                3             6 14
15           57     9       -11        6                1             6 15
16           57     8       -11        7                1             5 16
17           65     7       -17       -4               -2             2 17
18           69     6       -18       -5                1             3 18
19           70     5       -19       -7                1            -2 19
20           71     4       -22      -10               -1            -4 20
21           71     3       -24      -21               -4             0 21
22           73     2       -24      -22               -2             1 22
23           68     1       -20      -16               -1             4 23
24           65    12       -25      -25               -5            -3 24
25           57    11       -22      -22               -4            -3 25
26           41    10       -17      -22               -5             0 26
27           21     9        -9      -19                0             6 27
28           21     8       -11      -21               -2            -1 28
29           17     7       -13      -31               -4             0 29
30            9     6       -11      -28               -6            -1 30
31           11     5        -9      -23               -2             1 31
32            6     4        -7      -17               -2            -4 32
33           -2     3        -3      -12               -2            -1 33
34            0     2        -3      -14                1            -1 34
35            5     1        -6      -18               -2             0 35
36            3    12        -4      -16                0             3 36
37            7    11        -8      -22               -1             0 37
38            4    10        -1       -9                2             8 38
39            8     9        -2      -10                3             8 39
40            9     8        -2      -10                2             8 40
41           14     7        -1        0                3             8 41
42           12     6         1        3                4            11 42
43           12     5         2        2                5            13 43
44            7     4         2        4                5             5 44
45           15     3        -1       -3                4            12 45
46           14     2         1        0                5            13 46
47           19     1        -1       -1                6             9 47
48           39    12        -8       -7                4            11 48
49           12    11         1        2                6             7 49
50           11    10         2        3                6            12 50
51           17     9        -2       -3                3            11 51
52           16     8        -2       -5                5            10 52
53           25     7        -2        0                5            13 53
54           24     6        -2       -3                5            14 54
55           28     5        -6       -7                3            10 55
56           25     4        -4       -7                5            13 56
57           31     3        -5       -7                5            12 57
58           24     2        -2       -4                6            13 58
59           24     1        -1       -3                6            17 59
60           33    12        -5       -6                5            15 60
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
       (Intercept)               maand           indicator            economie  
           1.85424            -0.11454            -3.92323             0.97321  
`financi\303\253n`       spaarvermogen                   t  
           1.09728             0.90802            -0.02216  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
    Min      1Q  Median      3Q     Max 
-2.1369 -0.9040  0.1640  0.9198  2.1294 
Coefficients:
                   Estimate Std. Error  t value Pr(>|t|)    
(Intercept)         1.85424    0.62094    2.986  0.00427 ** 
maand              -0.11454    0.04435   -2.583  0.01260 *  
indicator          -3.92323    0.03081 -127.321  < 2e-16 ***
economie            0.97321    0.03735   26.056  < 2e-16 ***
`financi\303\253n`  1.09728    0.15584    7.041 3.87e-09 ***
spaarvermogen       0.90802    0.05791   15.680  < 2e-16 ***
t                  -0.02216    0.01922   -1.153  0.25414    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 1.168 on 53 degrees of freedom
Multiple R-squared: 0.9977,	Adjusted R-squared: 0.9974 
F-statistic:  3839 on 6 and 53 DF,  p-value: < 2.2e-16 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
           [,1]      [,2]       [,3]
 [1,] 0.3232722 0.6465444 0.67672780
 [2,] 0.3800068 0.7600136 0.61999321
 [3,] 0.2544043 0.5088087 0.74559567
 [4,] 0.3066190 0.6132380 0.69338098
 [5,] 0.6290597 0.7418806 0.37094030
 [6,] 0.6159222 0.7681557 0.38407783
 [7,] 0.5352091 0.9295818 0.46479090
 [8,] 0.5939627 0.8120745 0.40603726
 [9,] 0.5366593 0.9266814 0.46334071
[10,] 0.8275315 0.3449370 0.17246850
[11,] 0.9135910 0.1728179 0.08640897
[12,] 0.8820513 0.2358975 0.11794873
[13,] 0.8349322 0.3301356 0.16506778
[14,] 0.8074462 0.3851077 0.19255384
[15,] 0.8309574 0.3380853 0.16904263
[16,] 0.8609577 0.2780847 0.13904234
[17,] 0.8471780 0.3056440 0.15282202
[18,] 0.9023119 0.1953761 0.09768806
[19,] 0.8965242 0.2069515 0.10347577
[20,] 0.8602464 0.2795073 0.13975364
[21,] 0.8383278 0.3233443 0.16167216
[22,] 0.8164013 0.3671973 0.18359867
[23,] 0.7634257 0.4731486 0.23657431
[24,] 0.7190525 0.5618950 0.28094749
[25,] 0.6732832 0.6534336 0.32671679
[26,] 0.6541591 0.6916819 0.34584093
[27,] 0.6400241 0.7199518 0.35997588
[28,] 0.6448121 0.7103759 0.35518795
[29,] 0.5610338 0.8779323 0.43896615
[30,] 0.5234915 0.9530171 0.47650853
[31,] 0.7812789 0.4374423 0.21872114
[32,] 0.7383629 0.5232743 0.26163713
[33,] 0.7258628 0.5482744 0.27413719
[34,] 0.7089159 0.5821682 0.29108408
[35,] 0.6271637 0.7456725 0.37283627
[36,] 0.5530574 0.8938853 0.44694263
[37,] 0.5303814 0.9392371 0.46961856
[38,] 0.4215782 0.8431564 0.57842179
[39,] 0.3732132 0.7464264 0.62678678
[40,] 0.3861060 0.7722120 0.61389401
[41,] 0.2988353 0.5976706 0.70116469
> postscript(file="/var/www/html/rcomp/tmp/17udo1291240644.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/2i3ca1291240644.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/3i3ca1291240644.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/4i3ca1291240644.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/56rmo1291240644.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 60 
Frequency = 1 
          1           2           3           4           5           6 
 0.99949712  1.92141486 -0.09880691 -0.17600989 -1.29711364  1.00435878 
          7           8           9          10          11          12 
-0.91590135 -0.49289732 -1.90223583  0.18114322 -0.85133713  1.20836760 
         13          14          15          16          17          18 
-0.28651777 -2.13692587  0.96886373  0.81129234  1.90075144 -1.34151095 
         19          20          21          22          23          24 
 2.12938108 -1.80245419  0.62381604  0.40206721  1.34201659 -0.48791439 
         25          26          27          28          29          30 
-0.82751697  1.06949302 -1.49118880  1.06707202  0.14689402  0.08392870 
         31          32          33          34          35          36 
-1.23320701  0.22168989  0.23213367  0.79432689  0.20893986  0.47244396 
         37          38          39          40          41          42 
-1.65225791 -0.48973778 -0.62941706  1.37549056 -0.62304515 -1.60992359 
         43          44          45          46          47          48 
 0.28082576  0.50615153 -1.80226394  0.02688839  0.59604093  0.63331277 
         49          50          51          52          53          54 
 1.52860290 -1.15383109 -0.89999599 -1.33250352 -0.01497857  0.90426139 
         55          56          57          58          59          60 
-1.16156229 -1.32609300  1.56631643  1.31869846  0.54427986  0.96638689 
> postscript(file="/var/www/html/rcomp/tmp/66rmo1291240644.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 60 
Frequency = 1 
   lag(myerror, k = 1)     myerror
 0          0.99949712          NA
 1          1.92141486  0.99949712
 2         -0.09880691  1.92141486
 3         -0.17600989 -0.09880691
 4         -1.29711364 -0.17600989
 5          1.00435878 -1.29711364
 6         -0.91590135  1.00435878
 7         -0.49289732 -0.91590135
 8         -1.90223583 -0.49289732
 9          0.18114322 -1.90223583
10         -0.85133713  0.18114322
11          1.20836760 -0.85133713
12         -0.28651777  1.20836760
13         -2.13692587 -0.28651777
14          0.96886373 -2.13692587
15          0.81129234  0.96886373
16          1.90075144  0.81129234
17         -1.34151095  1.90075144
18          2.12938108 -1.34151095
19         -1.80245419  2.12938108
20          0.62381604 -1.80245419
21          0.40206721  0.62381604
22          1.34201659  0.40206721
23         -0.48791439  1.34201659
24         -0.82751697 -0.48791439
25          1.06949302 -0.82751697
26         -1.49118880  1.06949302
27          1.06707202 -1.49118880
28          0.14689402  1.06707202
29          0.08392870  0.14689402
30         -1.23320701  0.08392870
31          0.22168989 -1.23320701
32          0.23213367  0.22168989
33          0.79432689  0.23213367
34          0.20893986  0.79432689
35          0.47244396  0.20893986
36         -1.65225791  0.47244396
37         -0.48973778 -1.65225791
38         -0.62941706 -0.48973778
39          1.37549056 -0.62941706
40         -0.62304515  1.37549056
41         -1.60992359 -0.62304515
42          0.28082576 -1.60992359
43          0.50615153  0.28082576
44         -1.80226394  0.50615153
45          0.02688839 -1.80226394
46          0.59604093  0.02688839
47          0.63331277  0.59604093
48          1.52860290  0.63331277
49         -1.15383109  1.52860290
50         -0.89999599 -1.15383109
51         -1.33250352 -0.89999599
52         -0.01497857 -1.33250352
53          0.90426139 -0.01497857
54         -1.16156229  0.90426139
55         -1.32609300 -1.16156229
56          1.56631643 -1.32609300
57          1.31869846  1.56631643
58          0.54427986  1.31869846
59          0.96638689  0.54427986
60                  NA  0.96638689
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)     myerror
 [1,]          1.92141486  0.99949712
 [2,]         -0.09880691  1.92141486
 [3,]         -0.17600989 -0.09880691
 [4,]         -1.29711364 -0.17600989
 [5,]          1.00435878 -1.29711364
 [6,]         -0.91590135  1.00435878
 [7,]         -0.49289732 -0.91590135
 [8,]         -1.90223583 -0.49289732
 [9,]          0.18114322 -1.90223583
[10,]         -0.85133713  0.18114322
[11,]          1.20836760 -0.85133713
[12,]         -0.28651777  1.20836760
[13,]         -2.13692587 -0.28651777
[14,]          0.96886373 -2.13692587
[15,]          0.81129234  0.96886373
[16,]          1.90075144  0.81129234
[17,]         -1.34151095  1.90075144
[18,]          2.12938108 -1.34151095
[19,]         -1.80245419  2.12938108
[20,]          0.62381604 -1.80245419
[21,]          0.40206721  0.62381604
[22,]          1.34201659  0.40206721
[23,]         -0.48791439  1.34201659
[24,]         -0.82751697 -0.48791439
[25,]          1.06949302 -0.82751697
[26,]         -1.49118880  1.06949302
[27,]          1.06707202 -1.49118880
[28,]          0.14689402  1.06707202
[29,]          0.08392870  0.14689402
[30,]         -1.23320701  0.08392870
[31,]          0.22168989 -1.23320701
[32,]          0.23213367  0.22168989
[33,]          0.79432689  0.23213367
[34,]          0.20893986  0.79432689
[35,]          0.47244396  0.20893986
[36,]         -1.65225791  0.47244396
[37,]         -0.48973778 -1.65225791
[38,]         -0.62941706 -0.48973778
[39,]          1.37549056 -0.62941706
[40,]         -0.62304515  1.37549056
[41,]         -1.60992359 -0.62304515
[42,]          0.28082576 -1.60992359
[43,]          0.50615153  0.28082576
[44,]         -1.80226394  0.50615153
[45,]          0.02688839 -1.80226394
[46,]          0.59604093  0.02688839
[47,]          0.63331277  0.59604093
[48,]          1.52860290  0.63331277
[49,]         -1.15383109  1.52860290
[50,]         -0.89999599 -1.15383109
[51,]         -1.33250352 -0.89999599
[52,]         -0.01497857 -1.33250352
[53,]          0.90426139 -0.01497857
[54,]         -1.16156229  0.90426139
[55,]         -1.32609300 -1.16156229
[56,]          1.56631643 -1.32609300
[57,]          1.31869846  1.56631643
[58,]          0.54427986  1.31869846
[59,]          0.96638689  0.54427986
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)     myerror
1           1.92141486  0.99949712
2          -0.09880691  1.92141486
3          -0.17600989 -0.09880691
4          -1.29711364 -0.17600989
5           1.00435878 -1.29711364
6          -0.91590135  1.00435878
7          -0.49289732 -0.91590135
8          -1.90223583 -0.49289732
9           0.18114322 -1.90223583
10         -0.85133713  0.18114322
11          1.20836760 -0.85133713
12         -0.28651777  1.20836760
13         -2.13692587 -0.28651777
14          0.96886373 -2.13692587
15          0.81129234  0.96886373
16          1.90075144  0.81129234
17         -1.34151095  1.90075144
18          2.12938108 -1.34151095
19         -1.80245419  2.12938108
20          0.62381604 -1.80245419
21          0.40206721  0.62381604
22          1.34201659  0.40206721
23         -0.48791439  1.34201659
24         -0.82751697 -0.48791439
25          1.06949302 -0.82751697
26         -1.49118880  1.06949302
27          1.06707202 -1.49118880
28          0.14689402  1.06707202
29          0.08392870  0.14689402
30         -1.23320701  0.08392870
31          0.22168989 -1.23320701
32          0.23213367  0.22168989
33          0.79432689  0.23213367
34          0.20893986  0.79432689
35          0.47244396  0.20893986
36         -1.65225791  0.47244396
37         -0.48973778 -1.65225791
38         -0.62941706 -0.48973778
39          1.37549056 -0.62941706
40         -0.62304515  1.37549056
41         -1.60992359 -0.62304515
42          0.28082576 -1.60992359
43          0.50615153  0.28082576
44         -1.80226394  0.50615153
45          0.02688839 -1.80226394
46          0.59604093  0.02688839
47          0.63331277  0.59604093
48          1.52860290  0.63331277
49         -1.15383109  1.52860290
50         -0.89999599 -1.15383109
51         -1.33250352 -0.89999599
52         -0.01497857 -1.33250352
53          0.90426139 -0.01497857
54         -1.16156229  0.90426139
55         -1.32609300 -1.16156229
56          1.56631643 -1.32609300
57          1.31869846  1.56631643
58          0.54427986  1.31869846
59          0.96638689  0.54427986
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/7yjmr1291240644.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/8yjmr1291240644.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/9rs3u1291240644.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/html/rcomp/tmp/10rs3u1291240644.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/11vs101291240644.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/12gti51291240644.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/13clye1291240644.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/14x3wk1291240644.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/15jmv81291240644.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/164mbe1291240644.tab") 
+ }
> 
> try(system("convert tmp/17udo1291240644.ps tmp/17udo1291240644.png",intern=TRUE))
character(0)
> try(system("convert tmp/2i3ca1291240644.ps tmp/2i3ca1291240644.png",intern=TRUE))
character(0)
> try(system("convert tmp/3i3ca1291240644.ps tmp/3i3ca1291240644.png",intern=TRUE))
character(0)
> try(system("convert tmp/4i3ca1291240644.ps tmp/4i3ca1291240644.png",intern=TRUE))
character(0)
> try(system("convert tmp/56rmo1291240644.ps tmp/56rmo1291240644.png",intern=TRUE))
character(0)
> try(system("convert tmp/66rmo1291240644.ps tmp/66rmo1291240644.png",intern=TRUE))
character(0)
> try(system("convert tmp/7yjmr1291240644.ps tmp/7yjmr1291240644.png",intern=TRUE))
character(0)
> try(system("convert tmp/8yjmr1291240644.ps tmp/8yjmr1291240644.png",intern=TRUE))
character(0)
> try(system("convert tmp/9rs3u1291240644.ps tmp/9rs3u1291240644.png",intern=TRUE))
character(0)
> try(system("convert tmp/10rs3u1291240644.ps tmp/10rs3u1291240644.png",intern=TRUE))
character(0)
> 
> 
> proc.time()
   user  system elapsed 
  2.467   1.612   6.429