R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(46,62,66,59,58,61,41,27,58,70,49,59,44,36,72,45,56,54,53,35,61,52,47,51,52,63,74,45,51,64,36,30,55,64,39,40,63,45,59,55,40,64,27,28,45,57,45,69,60,56,58,50,51,53,37,22,55,70,62,58,39,49,58,47,42,62,39,40,72,70,54,65) > par10 = 'FALSE' > par9 = '0' > par8 = '0' > par7 = '0' > par6 = '0' > par5 = '12' > par4 = '1' > par3 = '0' > par2 = '2.0' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") sigma^2 estimated as 1470088: log likelihood = -408.93, aic = 819.86 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 61 End = 72 Frequency = 1 [1] 3600 3136 3364 2500 2601 2809 1369 484 3025 4900 3844 3364 $se Time Series: Start = 61 End = 72 Frequency = 1 [1] 1212.472 1212.472 1212.472 1212.472 1212.472 1212.472 1212.472 1212.472 [9] 1212.472 1212.472 1212.472 1212.472 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 61 End = 72 Frequency = 1 [1] 1223.5549 759.5549 987.5549 123.5549 224.5549 432.5549 [7] -1007.4451 -1892.4451 648.5549 2523.5549 1467.5549 987.5549 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 61 End = 72 Frequency = 1 [1] 5976.445 5512.445 5740.445 4876.445 4977.445 5185.445 3745.445 2860.445 [9] 5401.445 7276.445 6220.445 5740.445 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 46 62 66 59 58 61 41 27 58 70 49 59 44 36 72 45 56 54 53 35 61 52 47 51 52 [26] 63 74 45 51 64 36 30 55 64 39 40 63 45 59 55 40 64 27 28 45 57 45 69 60 56 [51] 58 50 51 53 37 22 55 70 62 58 60 56 58 50 51 53 37 22 55 70 62 58 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 61 End = 72 Frequency = 1 [1] 0.1471724 0.1662340 0.1562784 0.2023627 0.1955883 0.1829999 0.3337016 [8] 0.7301282 0.1715633 0.1115312 0.1388232 0.1562784 > postscript(file="/var/www/html/rcomp/tmp/1d7we1291379182.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) Error in plot.window(...) : need finite 'ylim' values Calls: plot -> plot.default -> localWindow -> plot.window Execution halted