R version 2.9.0 (2009-04-17)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(4
+ ,4
+ ,5
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,5
+ ,5
+ ,4
+ ,4
+ ,5
+ ,5
+ ,4
+ ,3
+ ,3
+ ,2
+ ,3
+ ,4
+ ,4
+ ,3
+ ,2
+ ,3
+ ,2
+ ,3
+ ,2
+ ,4
+ ,3
+ ,5
+ ,4
+ ,3
+ ,3
+ ,4
+ ,5
+ ,4
+ ,4
+ ,3
+ ,3
+ ,3
+ ,3
+ ,4
+ ,4
+ ,2
+ ,3
+ ,4
+ ,4
+ ,2
+ ,4
+ ,2
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,5
+ ,3
+ ,4
+ ,3
+ ,2
+ ,3
+ ,2
+ ,2
+ ,3
+ ,4
+ ,3
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,2
+ ,3
+ ,2
+ ,4
+ ,2
+ ,3
+ ,2
+ ,5
+ ,4
+ ,2
+ ,5
+ ,5
+ ,5
+ ,4
+ ,3
+ ,4
+ ,2
+ ,3
+ ,3
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,3
+ ,4
+ ,4
+ ,5
+ ,4
+ ,3
+ ,2
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,2
+ ,3
+ ,2
+ ,2
+ ,2
+ ,4
+ ,2
+ ,4
+ ,2
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,3
+ ,3
+ ,2
+ ,4
+ ,4
+ ,4
+ ,3
+ ,3
+ ,2
+ ,4
+ ,4
+ ,2
+ ,3
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,3
+ ,4
+ ,3
+ ,4
+ ,3
+ ,5
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,3
+ ,2
+ ,4
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,3
+ ,2
+ ,4
+ ,4
+ ,4
+ ,3
+ ,2
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,5
+ ,4
+ ,4
+ ,5
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,5
+ ,3
+ ,2
+ ,3
+ ,3
+ ,5
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,3
+ ,3
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,3
+ ,4
+ ,4
+ ,3
+ ,3
+ ,4
+ ,4
+ ,3
+ ,3
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,2
+ ,3
+ ,2
+ ,3
+ ,2
+ ,3
+ ,2
+ ,2
+ ,2
+ ,4
+ ,2
+ ,2
+ ,5
+ ,2
+ ,4
+ ,3
+ ,4
+ ,4
+ ,4
+ ,5
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,5
+ ,4
+ ,4
+ ,4
+ ,4
+ ,5
+ ,5
+ ,4
+ ,3
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,3
+ ,4
+ ,3
+ ,4
+ ,3
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,5
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,3
+ ,4
+ ,3
+ ,3
+ ,4
+ ,3
+ ,2
+ ,2
+ ,4
+ ,2
+ ,1
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,4
+ ,3
+ ,2
+ ,3
+ ,4
+ ,4
+ ,2
+ ,4
+ ,3
+ ,2
+ ,2
+ ,5
+ ,2
+ ,2
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,2
+ ,3
+ ,2
+ ,3
+ ,1
+ ,4
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,5
+ ,3
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,5
+ ,4
+ ,4
+ ,5
+ ,5
+ ,5
+ ,5
+ ,4
+ ,4
+ ,2
+ ,4
+ ,3
+ ,4
+ ,4
+ ,3
+ ,3
+ ,2
+ ,3
+ ,3
+ ,4
+ ,3
+ ,3
+ ,3
+ ,2
+ ,3
+ ,2
+ ,3
+ ,2
+ ,4
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,3
+ ,2
+ ,4
+ ,2
+ ,2
+ ,3
+ ,3
+ ,3
+ ,2
+ ,2
+ ,2
+ ,4
+ ,2
+ ,2
+ ,2
+ ,2
+ ,4
+ ,2
+ ,3
+ ,4
+ ,2
+ ,4
+ ,4
+ ,5
+ ,4
+ ,5
+ ,4
+ ,2
+ ,4
+ ,5
+ ,4
+ ,4
+ ,5
+ ,4
+ ,5
+ ,4
+ ,4
+ ,5
+ ,5
+ ,4
+ ,3
+ ,4
+ ,2
+ ,2
+ ,3
+ ,2
+ ,5
+ ,5
+ ,4
+ ,4
+ ,5
+ ,4
+ ,5
+ ,4
+ ,3
+ ,2
+ ,4
+ ,2
+ ,4
+ ,4
+ ,3
+ ,2
+ ,2
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,4
+ ,3
+ ,4
+ ,4
+ ,3
+ ,4
+ ,3
+ ,4
+ ,3
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,3
+ ,3
+ ,4
+ ,3
+ ,4
+ ,3
+ ,2
+ ,3
+ ,4
+ ,4
+ ,4
+ ,3
+ ,2
+ ,2
+ ,2
+ ,1
+ ,4
+ ,2
+ ,3
+ ,4
+ ,4
+ ,4
+ ,2
+ ,5
+ ,4
+ ,3
+ ,4
+ ,3
+ ,4
+ ,2
+ ,4
+ ,3
+ ,2
+ ,3
+ ,2
+ ,2
+ ,3
+ ,4
+ ,2
+ ,5
+ ,4
+ ,2
+ ,4
+ ,3
+ ,4
+ ,4
+ ,3
+ ,3
+ ,4
+ ,3
+ ,2
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,2
+ ,2
+ ,5
+ ,4
+ ,4
+ ,3
+ ,3
+ ,4
+ ,4
+ ,4
+ ,3
+ ,3
+ ,3
+ ,4
+ ,3
+ ,3
+ ,4
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,2
+ ,4
+ ,4
+ ,3
+ ,3
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,4
+ ,5
+ ,4
+ ,4
+ ,3
+ ,3
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,2
+ ,3
+ ,3
+ ,4
+ ,2
+ ,2
+ ,5
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,5
+ ,4
+ ,2
+ ,4
+ ,3
+ ,3
+ ,3
+ ,4
+ ,3
+ ,4
+ ,3
+ ,4
+ ,2
+ ,2
+ ,4
+ ,2
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,5
+ ,4
+ ,4
+ ,3
+ ,3
+ ,4
+ ,3
+ ,5
+ ,4
+ ,5
+ ,4
+ ,4
+ ,3
+ ,3
+ ,4
+ ,5
+ ,5
+ ,4
+ ,3
+ ,4
+ ,4
+ ,5
+ ,5
+ ,5
+ ,3
+ ,3
+ ,4
+ ,3
+ ,4
+ ,4
+ ,4
+ ,3
+ ,2
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,3
+ ,2
+ ,4
+ ,3
+ ,4
+ ,4
+ ,3
+ ,3
+ ,2
+ ,4
+ ,3
+ ,4
+ ,4
+ ,2
+ ,3
+ ,2
+ ,4
+ ,3
+ ,2
+ ,3
+ ,2
+ ,2
+ ,4
+ ,2
+ ,2
+ ,4
+ ,2
+ ,4
+ ,4
+ ,2
+ ,4
+ ,2
+ ,5
+ ,5
+ ,2
+ ,2
+ ,3
+ ,3
+ ,1
+ ,4
+ ,3
+ ,3
+ ,3
+ ,4
+ ,3
+ ,2
+ ,4
+ ,4
+ ,4
+ ,3
+ ,3
+ ,4
+ ,3
+ ,4
+ ,3
+ ,4
+ ,3
+ ,3
+ ,3
+ ,3
+ ,4
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,5
+ ,4
+ ,4
+ ,3
+ ,3
+ ,3
+ ,3
+ ,4
+ ,3
+ ,3
+ ,2
+ ,3
+ ,2
+ ,4
+ ,3
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,3
+ ,2
+ ,3
+ ,2
+ ,3
+ ,4
+ ,4
+ ,3
+ ,3
+ ,4
+ ,3
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,3
+ ,3
+ ,5
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,5
+ ,4
+ ,2
+ ,2
+ ,3
+ ,2
+ ,3
+ ,3
+ ,4
+ ,5
+ ,4
+ ,4
+ ,3
+ ,3
+ ,5
+ ,4
+ ,5
+ ,3
+ ,2
+ ,4
+ ,3
+ ,4
+ ,4
+ ,3
+ ,3
+ ,2
+ ,3
+ ,4
+ ,4
+ ,2
+ ,3
+ ,4
+ ,3
+ ,4
+ ,4
+ ,3
+ ,5
+ ,3
+ ,4
+ ,3
+ ,3
+ ,3
+ ,3
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,3
+ ,5
+ ,1
+ ,5
+ ,5
+ ,4
+ ,2
+ ,2
+ ,4
+ ,2
+ ,2
+ ,2
+ ,1
+ ,5
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,2
+ ,3
+ ,3
+ ,3
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,5
+ ,4
+ ,3
+ ,3
+ ,3
+ ,4
+ ,4
+ ,4
+ ,2
+ ,2
+ ,3
+ ,2
+ ,2
+ ,3
+ ,4
+ ,4
+ ,3
+ ,3
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,3
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,3
+ ,5
+ ,4
+ ,2
+ ,2
+ ,2
+ ,2
+ ,4
+ ,3
+ ,3
+ ,5
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,3
+ ,3
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,4
+ ,4
+ ,3
+ ,4
+ ,2
+ ,4
+ ,3
+ ,4
+ ,4
+ ,5
+ ,3
+ ,5
+ ,5
+ ,5
+ ,5
+ ,5)
+ ,dim=c(7
+ ,152)
+ ,dimnames=list(c('y'
+ ,'x1'
+ ,'x2'
+ ,'x3'
+ ,'x4'
+ ,'x5'
+ ,'x6')
+ ,1:152))
> y <- array(NA,dim=c(7,152),dimnames=list(c('y','x1','x2','x3','x4','x5','x6'),1:152))
> for (i in 1:dim(x)[1])
+ {
+ for (j in 1:dim(x)[2])
+ {
+ y[i,j] <- as.numeric(x[i,j])
+ }
+ }
> par3 = 'Linear Trend'
> par2 = 'Do not include Seasonal Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
The following object(s) are masked from package:base :
as.Date.numeric
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
y x1 x2 x3 x4 x5 x6 t
1 4 4 5 4 4 4 4 1
2 4 4 4 4 3 4 4 2
3 5 5 4 4 5 5 4 3
4 3 3 2 3 4 4 3 4
5 2 3 2 3 2 4 3 5
6 5 4 3 3 4 5 4 6
7 4 3 3 3 3 4 4 7
8 2 3 4 4 2 4 2 8
9 4 4 3 4 4 5 3 9
10 4 3 2 3 2 2 3 10
11 4 3 2 4 4 4 4 11
12 2 3 2 4 2 3 2 12
13 5 4 2 5 5 5 4 13
14 3 4 2 3 3 4 4 14
15 4 3 4 4 4 4 4 15
16 4 3 3 4 4 5 4 16
17 3 2 3 3 3 3 3 17
18 4 4 4 4 4 4 4 18
19 2 3 2 2 2 4 2 19
20 4 2 4 4 3 4 4 20
21 3 3 2 4 4 4 3 21
22 3 2 4 4 2 3 4 22
23 4 4 2 4 4 4 4 23
24 4 4 3 4 4 4 4 24
25 4 4 4 4 4 4 4 25
26 4 3 3 4 3 4 3 26
27 5 4 4 4 4 4 4 27
28 3 4 3 2 4 4 4 28
29 1 4 4 4 4 4 4 29
30 4 2 4 4 4 3 4 30
31 4 2 4 4 4 4 4 31
32 3 4 3 2 4 4 4 32
33 3 2 4 4 4 3 4 33
34 4 5 4 4 5 4 4 34
35 4 4 4 4 4 4 4 35
36 4 4 4 4 4 4 5 36
37 3 2 3 3 5 4 4 37
38 4 2 4 4 4 4 4 38
39 3 3 3 3 4 4 4 39
40 4 3 4 3 4 4 3 40
41 3 4 4 3 3 3 4 41
42 4 4 4 3 4 4 2 42
43 3 2 3 2 3 2 2 43
44 2 4 2 2 5 2 4 44
45 3 4 4 4 5 4 4 45
46 4 4 4 2 4 4 5 46
47 4 4 4 4 5 5 4 47
48 3 2 4 4 4 4 4 48
49 3 3 4 3 4 3 4 49
50 4 2 4 4 4 4 5 50
51 4 2 4 4 4 4 3 51
52 3 4 3 3 4 3 2 52
53 2 4 2 1 4 4 4 53
54 4 4 4 4 4 4 4 54
55 4 3 4 4 4 3 2 55
56 3 4 4 2 4 3 2 56
57 2 5 2 2 4 2 4 57
58 4 4 4 4 4 4 4 58
59 3 4 4 4 4 4 4 59
60 3 4 4 3 4 4 3 60
61 4 4 4 3 4 4 2 61
62 3 2 3 1 4 3 4 62
63 4 4 4 4 4 4 5 63
64 3 4 4 2 4 4 4 64
65 4 3 4 4 4 4 5 65
66 4 4 5 5 5 5 4 66
67 4 2 4 3 4 4 3 67
68 3 2 3 3 4 3 3 68
69 3 2 3 2 3 2 4 69
70 3 4 4 4 4 4 3 70
71 4 4 3 2 4 2 2 71
72 3 3 3 2 2 2 4 72
73 2 2 2 2 4 2 3 73
74 4 2 4 4 5 4 5 74
75 4 2 4 5 4 4 5 75
76 4 5 4 4 5 5 4 76
77 3 4 2 2 3 2 5 77
78 5 4 4 5 4 5 4 78
79 3 2 4 2 4 4 3 79
80 2 2 3 3 3 3 3 80
81 3 4 3 4 4 3 4 81
82 3 4 3 3 4 4 4 82
83 4 4 4 2 4 4 3 83
84 4 4 3 3 4 3 4 84
85 3 2 3 4 4 4 3 85
86 2 2 2 1 4 2 3 86
87 4 4 4 2 5 4 3 87
88 4 3 4 2 4 3 2 88
89 3 2 2 3 4 2 5 89
90 4 2 4 3 4 4 3 90
91 3 4 3 2 4 4 4 91
92 2 4 2 2 5 4 4 92
93 3 3 4 4 4 3 3 93
94 3 4 3 3 4 3 3 94
95 3 3 3 3 3 2 4 95
96 4 3 3 4 4 3 4 96
97 4 4 5 4 4 3 3 97
98 4 4 4 2 4 2 3 98
99 3 4 2 2 5 4 4 99
100 4 4 4 4 5 4 2 100
101 4 3 3 3 4 3 4 101
102 3 4 2 2 4 2 4 102
103 4 2 4 4 5 4 4 103
104 3 3 4 3 5 4 5 104
105 4 4 3 3 4 5 5 105
106 4 3 4 4 5 5 5 106
107 3 3 4 3 4 4 4 107
108 3 2 4 4 4 3 4 108
109 3 2 4 3 4 4 3 109
110 3 2 4 3 4 4 2 110
111 3 2 4 3 2 3 2 111
112 2 4 2 2 4 2 4 112
113 4 2 4 2 5 5 2 113
114 2 3 3 1 4 3 3 114
115 3 4 3 2 4 4 4 115
116 3 3 4 3 4 3 4 116
117 3 3 3 3 4 3 4 117
118 4 4 4 3 4 5 4 118
119 4 3 3 3 3 4 3 119
120 3 2 3 2 4 3 4 120
121 4 3 4 4 4 4 3 121
122 3 2 3 2 3 4 4 122
123 3 3 4 3 4 4 4 123
124 3 4 3 3 5 4 4 124
125 4 3 4 4 5 4 2 125
126 2 3 2 3 3 4 5 126
127 4 4 3 3 5 4 5 127
128 3 2 4 3 4 4 3 128
129 3 2 3 4 4 2 3 129
130 4 3 4 4 3 5 3 130
131 4 3 3 3 3 4 4 131
132 4 3 4 4 4 4 3 132
133 3 5 1 5 5 4 2 133
134 2 4 2 2 2 1 5 134
135 4 4 4 4 4 4 4 135
136 2 4 4 4 4 4 2 136
137 3 3 3 3 4 4 4 137
138 4 4 4 3 5 4 3 138
139 3 3 4 4 4 2 2 139
140 3 2 2 3 4 4 3 140
141 3 4 4 2 4 4 3 141
142 3 4 4 4 4 3 4 142
143 4 4 4 4 4 4 4 143
144 3 2 4 4 4 4 4 144
145 3 4 4 3 5 4 2 145
146 2 2 2 4 3 3 5 146
147 2 4 4 4 4 4 4 147
148 3 3 3 4 4 2 4 148
149 4 2 4 4 4 4 3 149
150 3 3 3 3 4 4 3 150
151 4 2 4 3 4 4 5 151
152 3 5 5 5 5 5 4 152
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept) x1 x2 x3 x4 x5
0.859015 0.004804 0.248974 0.147059 0.162154 0.163837
x6 t
0.050420 -0.003321
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
Min 1Q Median 3Q Max
-2.8717 -0.3818 0.0892 0.4368 1.4174
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.859015 0.411478 2.088 0.038592 *
x1 0.004804 0.061118 0.079 0.937463
x2 0.248974 0.071657 3.475 0.000676 ***
x3 0.147059 0.064610 2.276 0.024315 *
x4 0.162154 0.082937 1.955 0.052503 .
x5 0.163837 0.073467 2.230 0.027290 *
x6 0.050420 0.061045 0.826 0.410197
t -0.003321 0.001240 -2.679 0.008234 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6306 on 144 degrees of freedom
Multiple R-squared: 0.3425, Adjusted R-squared: 0.3105
F-statistic: 10.71 on 7 and 144 DF, p-value: 7.998e-11
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
[,1] [,2] [,3]
[1,] 0.17195222 0.343904435 0.828047782
[2,] 0.12260912 0.245218237 0.877390881
[3,] 0.08849758 0.176995153 0.911502424
[4,] 0.86412990 0.271740194 0.135870097
[5,] 0.81271636 0.374567286 0.187283643
[6,] 0.73954371 0.520912583 0.260456292
[7,] 0.65289157 0.694216851 0.347108425
[8,] 0.60224129 0.795517417 0.397758709
[9,] 0.52934674 0.941306528 0.470653264
[10,] 0.50818580 0.983628397 0.491814199
[11,] 0.47439030 0.948780599 0.525609701
[12,] 0.41264672 0.825293443 0.587353279
[13,] 0.35169007 0.703380138 0.648309931
[14,] 0.28854420 0.577088401 0.711455799
[15,] 0.22811910 0.456238207 0.771880896
[16,] 0.35717467 0.714349347 0.642825326
[17,] 0.40708073 0.814161463 0.592919269
[18,] 0.48965743 0.979314866 0.510342567
[19,] 0.99866161 0.002676785 0.001338392
[20,] 0.99799597 0.004008053 0.002004026
[21,] 0.99698290 0.006034203 0.003017101
[22,] 0.99543793 0.009124145 0.004562072
[23,] 0.99541972 0.009160564 0.004580282
[24,] 0.99333476 0.013330483 0.006665242
[25,] 0.99161288 0.016774243 0.008387121
[26,] 0.98791523 0.024169547 0.012084773
[27,] 0.98589517 0.028209669 0.014104835
[28,] 0.98346463 0.033070741 0.016535371
[29,] 0.97797352 0.044052965 0.022026483
[30,] 0.98754459 0.024910813 0.012455406
[31,] 0.98361465 0.032770709 0.016385354
[32,] 0.98982576 0.020348474 0.010174237
[33,] 0.98887567 0.022248654 0.011124327
[34,] 0.99315367 0.013692660 0.006846330
[35,] 0.99484384 0.010312314 0.005156157
[36,] 0.99413760 0.011724801 0.005862400
[37,] 0.99157322 0.016853569 0.008426784
[38,] 0.99165276 0.016694484 0.008347242
[39,] 0.98963708 0.020725832 0.010362916
[40,] 0.98627748 0.027445042 0.013722521
[41,] 0.98462068 0.030758650 0.015379325
[42,] 0.98028313 0.039433741 0.019716871
[43,] 0.98162609 0.036747814 0.018373907
[44,] 0.97745479 0.045090428 0.022545214
[45,] 0.97741647 0.045167058 0.022583529
[46,] 0.97181705 0.056365906 0.028182953
[47,] 0.97016574 0.059668528 0.029834264
[48,] 0.96320063 0.073598744 0.036799372
[49,] 0.96588617 0.068227668 0.034113834
[50,] 0.96393512 0.072129764 0.036064882
[51,] 0.96259294 0.074814115 0.037407058
[52,] 0.95548713 0.089025749 0.044512875
[53,] 0.94565088 0.108698237 0.054349119
[54,] 0.94078555 0.118428903 0.059214452
[55,] 0.92772720 0.144545601 0.072272801
[56,] 0.92210337 0.155793257 0.077896629
[57,] 0.91527034 0.169459326 0.084729663
[58,] 0.89644675 0.207106493 0.103553247
[59,] 0.88504362 0.229912753 0.114956377
[60,] 0.89586680 0.208266406 0.104133203
[61,] 0.94434686 0.111306285 0.055653142
[62,] 0.93931503 0.121369935 0.060684967
[63,] 0.93683759 0.126324811 0.063162406
[64,] 0.92043589 0.159128227 0.079564114
[65,] 0.90118018 0.197639636 0.098819818
[66,] 0.88033679 0.239326418 0.119663209
[67,] 0.86690382 0.266192351 0.133096175
[68,] 0.88911984 0.221760312 0.110880156
[69,] 0.87719839 0.245603227 0.122801613
[70,] 0.91717472 0.165650560 0.082825280
[71,] 0.90560052 0.188798952 0.094399476
[72,] 0.89471987 0.210560252 0.105280126
[73,] 0.89115626 0.217687470 0.108843735
[74,] 0.90107893 0.197842148 0.098921074
[75,] 0.89594350 0.208113007 0.104056504
[76,] 0.88922585 0.221548300 0.110774150
[77,] 0.87737433 0.245251347 0.122625674
[78,] 0.88846256 0.223074871 0.111537435
[79,] 0.86454774 0.270904523 0.135452262
[80,] 0.84781372 0.304372558 0.152186279
[81,] 0.82033632 0.359327365 0.179663683
[82,] 0.88410864 0.231782711 0.115891355
[83,] 0.88265229 0.234695424 0.117347712
[84,] 0.86121431 0.277571376 0.138785688
[85,] 0.83289305 0.334213892 0.167106946
[86,] 0.82933995 0.341320091 0.170660045
[87,] 0.79844909 0.403101812 0.201550906
[88,] 0.84999424 0.300011528 0.150005764
[89,] 0.81963992 0.360720156 0.180360078
[90,] 0.78956932 0.420861357 0.210430679
[91,] 0.82610538 0.347789231 0.173894615
[92,] 0.82104961 0.357900788 0.178950394
[93,] 0.79111240 0.417775200 0.208887600
[94,] 0.78671647 0.426567058 0.213283529
[95,] 0.77254610 0.454907804 0.227453902
[96,] 0.72996177 0.540076458 0.270038229
[97,] 0.70575745 0.588485109 0.294242554
[98,] 0.68071271 0.638574590 0.319287295
[99,] 0.66980237 0.660395261 0.330197631
[100,] 0.66389638 0.672207237 0.336103618
[101,] 0.61664147 0.766717066 0.383358533
[102,] 0.58589048 0.828219033 0.414109517
[103,] 0.54135511 0.917289780 0.458644890
[104,] 0.59034019 0.819319629 0.409659814
[105,] 0.53860518 0.922789641 0.461394820
[106,] 0.50822121 0.983557589 0.491778795
[107,] 0.45797414 0.915948270 0.542025865
[108,] 0.40718603 0.814372059 0.592813970
[109,] 0.44841047 0.896820931 0.551589534
[110,] 0.39998124 0.799962478 0.600018761
[111,] 0.35970416 0.719408313 0.640295844
[112,] 0.30657600 0.613152001 0.693423999
[113,] 0.30125437 0.602508748 0.698745626
[114,] 0.29251556 0.585031125 0.707484438
[115,] 0.23815096 0.476301918 0.761849041
[116,] 0.37056051 0.741121011 0.629439494
[117,] 0.31150691 0.623013812 0.688493094
[118,] 0.41256615 0.825132291 0.587433854
[119,] 0.40991342 0.819826847 0.590086576
[120,] 0.37849812 0.756996238 0.621501881
[121,] 0.44527496 0.890549912 0.554725044
[122,] 0.40386261 0.807725218 0.596137391
[123,] 0.41056490 0.821129797 0.589435101
[124,] 0.32845217 0.656904343 0.671547828
[125,] 0.43081872 0.861637439 0.569181280
[126,] 0.42622873 0.852457461 0.573771269
[127,] 0.33029339 0.660586787 0.669706607
[128,] 0.26626264 0.532525286 0.733737357
[129,] 0.18540188 0.370803763 0.814598119
[130,] 0.13436383 0.268727653 0.865636174
[131,] 0.08078695 0.161573892 0.919213054
> postscript(file="/var/www/html/rcomp/tmp/1o7731291380412.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556)
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device
1
> postscript(file="/var/www/html/rcomp/tmp/2o7731291380412.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556)
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device
1
> postscript(file="/var/www/html/rcomp/tmp/3zypo1291380412.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556)
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device
1
> postscript(file="/var/www/html/rcomp/tmp/4zypo1291380412.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556)
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device
1
> postscript(file="/var/www/html/rcomp/tmp/5zypo1291380412.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556)
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device
1
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1
End = 152
Frequency = 1
1 2 3 4 5 6
-0.213662840 0.200787367 0.711159559 -0.254492303 -0.926861982 1.284115410
7 8 9 10 11 12
0.618231501 -1.511485371 0.197440739 1.417418095 0.571277653 -0.836414549
13 14 15 16 17 18
1.100066451 -0.114348146 0.086614444 0.175073584 -0.129494045 0.091774930
19 20 21 22 23 24
-0.682883018 0.270179448 -0.345088135 -0.397186731 0.606330533 0.360677551
25 26 27 28 29 30
0.115024569 0.584698864 1.121667324 -0.331918454 -2.871689922 0.305075343
31 32 33 34 35 36
0.144560124 -0.318632945 -0.684960526 -0.022041154 0.148238341 0.101139277
37 38 39 40 41 42
-0.601632483 0.167809764 -0.437638903 0.367128556 -0.358783086 0.419388105
43 44 45 46 47 48
0.318178039 -0.864283342 -0.980702360 0.428471535 -0.137896201 -0.798976465
49 50 51 52 53 54
-0.489562895 0.157245849 0.261408107 -0.134587169 -0.852850424 0.211344506
55 56 57 58 59 60
0.484147006 -0.223216776 -0.663754613 0.224630015 -0.772048608 -0.571247547
61 62 63 64 65 66
0.482494271 0.101511499 0.190816460 -0.461323236 0.202262860 -0.470823638
67 68 69 70 71 72
0.461609385 -0.122258284 0.303692963 -0.685093019 1.239414835 0.471007921
73 74 75 76 77 78
-0.545781201 0.074804428 0.093221034 -0.046379911 0.519210606 0.980161718
79 80 81 82 83 84
-0.351474847 -0.920247287 -0.286167357 -0.299623332 0.652203370 0.870856018
85 86 87 88 89 90
-0.376690712 -0.355544055 0.503334406 0.887870938 0.259460709 0.538001058
91 92 93 94 95 96
-0.122671695 -1.032530431 -0.440061104 -0.045509771 0.238185879 0.768456946
97 98 99 100 101 102
0.319446400 1.029697218 -0.009280791 0.302814263 0.932123075 0.490511003
103 104 105 106 107 108
0.221544805 -0.683298661 0.562511305 0.012448254 -0.460759617 -0.435857242
109 110 111 112 113 114
-0.398892776 -0.345150958 0.146315958 -0.476275225 0.485881349 -0.680160096
115 116 117 118 119 120
-0.042958644 -0.267030627 -0.014734891 0.407135290 1.040646180 0.147092129
121 122 123 124 125 126
0.489100860 0.152052760 -0.407617583 -0.322279965 0.390652337 -0.787970703
127 128 129 130 131 132
0.637263726 -0.335786611 0.097123073 0.517311131 1.030082265 0.525636009
133 134 135 136 137 138
0.007479896 0.034520170 0.480376053 -1.415461688 -0.112143945 0.525665397
139 140 141 142 143 144
-0.073020720 0.202018632 -0.155156757 -0.332537711 0.506947070 -0.480124261
145 146 147 148 149 150
-0.400664523 -0.699962162 -1.479767421 0.105005152 0.586903066 -0.018545601
151 152
0.639764182 -1.189988851
> postscript(file="/var/www/html/rcomp/tmp/6spor1291380412.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556)
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0
End = 152
Frequency = 1
lag(myerror, k = 1) myerror
0 -0.213662840 NA
1 0.200787367 -0.213662840
2 0.711159559 0.200787367
3 -0.254492303 0.711159559
4 -0.926861982 -0.254492303
5 1.284115410 -0.926861982
6 0.618231501 1.284115410
7 -1.511485371 0.618231501
8 0.197440739 -1.511485371
9 1.417418095 0.197440739
10 0.571277653 1.417418095
11 -0.836414549 0.571277653
12 1.100066451 -0.836414549
13 -0.114348146 1.100066451
14 0.086614444 -0.114348146
15 0.175073584 0.086614444
16 -0.129494045 0.175073584
17 0.091774930 -0.129494045
18 -0.682883018 0.091774930
19 0.270179448 -0.682883018
20 -0.345088135 0.270179448
21 -0.397186731 -0.345088135
22 0.606330533 -0.397186731
23 0.360677551 0.606330533
24 0.115024569 0.360677551
25 0.584698864 0.115024569
26 1.121667324 0.584698864
27 -0.331918454 1.121667324
28 -2.871689922 -0.331918454
29 0.305075343 -2.871689922
30 0.144560124 0.305075343
31 -0.318632945 0.144560124
32 -0.684960526 -0.318632945
33 -0.022041154 -0.684960526
34 0.148238341 -0.022041154
35 0.101139277 0.148238341
36 -0.601632483 0.101139277
37 0.167809764 -0.601632483
38 -0.437638903 0.167809764
39 0.367128556 -0.437638903
40 -0.358783086 0.367128556
41 0.419388105 -0.358783086
42 0.318178039 0.419388105
43 -0.864283342 0.318178039
44 -0.980702360 -0.864283342
45 0.428471535 -0.980702360
46 -0.137896201 0.428471535
47 -0.798976465 -0.137896201
48 -0.489562895 -0.798976465
49 0.157245849 -0.489562895
50 0.261408107 0.157245849
51 -0.134587169 0.261408107
52 -0.852850424 -0.134587169
53 0.211344506 -0.852850424
54 0.484147006 0.211344506
55 -0.223216776 0.484147006
56 -0.663754613 -0.223216776
57 0.224630015 -0.663754613
58 -0.772048608 0.224630015
59 -0.571247547 -0.772048608
60 0.482494271 -0.571247547
61 0.101511499 0.482494271
62 0.190816460 0.101511499
63 -0.461323236 0.190816460
64 0.202262860 -0.461323236
65 -0.470823638 0.202262860
66 0.461609385 -0.470823638
67 -0.122258284 0.461609385
68 0.303692963 -0.122258284
69 -0.685093019 0.303692963
70 1.239414835 -0.685093019
71 0.471007921 1.239414835
72 -0.545781201 0.471007921
73 0.074804428 -0.545781201
74 0.093221034 0.074804428
75 -0.046379911 0.093221034
76 0.519210606 -0.046379911
77 0.980161718 0.519210606
78 -0.351474847 0.980161718
79 -0.920247287 -0.351474847
80 -0.286167357 -0.920247287
81 -0.299623332 -0.286167357
82 0.652203370 -0.299623332
83 0.870856018 0.652203370
84 -0.376690712 0.870856018
85 -0.355544055 -0.376690712
86 0.503334406 -0.355544055
87 0.887870938 0.503334406
88 0.259460709 0.887870938
89 0.538001058 0.259460709
90 -0.122671695 0.538001058
91 -1.032530431 -0.122671695
92 -0.440061104 -1.032530431
93 -0.045509771 -0.440061104
94 0.238185879 -0.045509771
95 0.768456946 0.238185879
96 0.319446400 0.768456946
97 1.029697218 0.319446400
98 -0.009280791 1.029697218
99 0.302814263 -0.009280791
100 0.932123075 0.302814263
101 0.490511003 0.932123075
102 0.221544805 0.490511003
103 -0.683298661 0.221544805
104 0.562511305 -0.683298661
105 0.012448254 0.562511305
106 -0.460759617 0.012448254
107 -0.435857242 -0.460759617
108 -0.398892776 -0.435857242
109 -0.345150958 -0.398892776
110 0.146315958 -0.345150958
111 -0.476275225 0.146315958
112 0.485881349 -0.476275225
113 -0.680160096 0.485881349
114 -0.042958644 -0.680160096
115 -0.267030627 -0.042958644
116 -0.014734891 -0.267030627
117 0.407135290 -0.014734891
118 1.040646180 0.407135290
119 0.147092129 1.040646180
120 0.489100860 0.147092129
121 0.152052760 0.489100860
122 -0.407617583 0.152052760
123 -0.322279965 -0.407617583
124 0.390652337 -0.322279965
125 -0.787970703 0.390652337
126 0.637263726 -0.787970703
127 -0.335786611 0.637263726
128 0.097123073 -0.335786611
129 0.517311131 0.097123073
130 1.030082265 0.517311131
131 0.525636009 1.030082265
132 0.007479896 0.525636009
133 0.034520170 0.007479896
134 0.480376053 0.034520170
135 -1.415461688 0.480376053
136 -0.112143945 -1.415461688
137 0.525665397 -0.112143945
138 -0.073020720 0.525665397
139 0.202018632 -0.073020720
140 -0.155156757 0.202018632
141 -0.332537711 -0.155156757
142 0.506947070 -0.332537711
143 -0.480124261 0.506947070
144 -0.400664523 -0.480124261
145 -0.699962162 -0.400664523
146 -1.479767421 -0.699962162
147 0.105005152 -1.479767421
148 0.586903066 0.105005152
149 -0.018545601 0.586903066
150 0.639764182 -0.018545601
151 -1.189988851 0.639764182
152 NA -1.189988851
> dum1 <- dum[2:length(myerror),]
> dum1
lag(myerror, k = 1) myerror
[1,] 0.200787367 -0.213662840
[2,] 0.711159559 0.200787367
[3,] -0.254492303 0.711159559
[4,] -0.926861982 -0.254492303
[5,] 1.284115410 -0.926861982
[6,] 0.618231501 1.284115410
[7,] -1.511485371 0.618231501
[8,] 0.197440739 -1.511485371
[9,] 1.417418095 0.197440739
[10,] 0.571277653 1.417418095
[11,] -0.836414549 0.571277653
[12,] 1.100066451 -0.836414549
[13,] -0.114348146 1.100066451
[14,] 0.086614444 -0.114348146
[15,] 0.175073584 0.086614444
[16,] -0.129494045 0.175073584
[17,] 0.091774930 -0.129494045
[18,] -0.682883018 0.091774930
[19,] 0.270179448 -0.682883018
[20,] -0.345088135 0.270179448
[21,] -0.397186731 -0.345088135
[22,] 0.606330533 -0.397186731
[23,] 0.360677551 0.606330533
[24,] 0.115024569 0.360677551
[25,] 0.584698864 0.115024569
[26,] 1.121667324 0.584698864
[27,] -0.331918454 1.121667324
[28,] -2.871689922 -0.331918454
[29,] 0.305075343 -2.871689922
[30,] 0.144560124 0.305075343
[31,] -0.318632945 0.144560124
[32,] -0.684960526 -0.318632945
[33,] -0.022041154 -0.684960526
[34,] 0.148238341 -0.022041154
[35,] 0.101139277 0.148238341
[36,] -0.601632483 0.101139277
[37,] 0.167809764 -0.601632483
[38,] -0.437638903 0.167809764
[39,] 0.367128556 -0.437638903
[40,] -0.358783086 0.367128556
[41,] 0.419388105 -0.358783086
[42,] 0.318178039 0.419388105
[43,] -0.864283342 0.318178039
[44,] -0.980702360 -0.864283342
[45,] 0.428471535 -0.980702360
[46,] -0.137896201 0.428471535
[47,] -0.798976465 -0.137896201
[48,] -0.489562895 -0.798976465
[49,] 0.157245849 -0.489562895
[50,] 0.261408107 0.157245849
[51,] -0.134587169 0.261408107
[52,] -0.852850424 -0.134587169
[53,] 0.211344506 -0.852850424
[54,] 0.484147006 0.211344506
[55,] -0.223216776 0.484147006
[56,] -0.663754613 -0.223216776
[57,] 0.224630015 -0.663754613
[58,] -0.772048608 0.224630015
[59,] -0.571247547 -0.772048608
[60,] 0.482494271 -0.571247547
[61,] 0.101511499 0.482494271
[62,] 0.190816460 0.101511499
[63,] -0.461323236 0.190816460
[64,] 0.202262860 -0.461323236
[65,] -0.470823638 0.202262860
[66,] 0.461609385 -0.470823638
[67,] -0.122258284 0.461609385
[68,] 0.303692963 -0.122258284
[69,] -0.685093019 0.303692963
[70,] 1.239414835 -0.685093019
[71,] 0.471007921 1.239414835
[72,] -0.545781201 0.471007921
[73,] 0.074804428 -0.545781201
[74,] 0.093221034 0.074804428
[75,] -0.046379911 0.093221034
[76,] 0.519210606 -0.046379911
[77,] 0.980161718 0.519210606
[78,] -0.351474847 0.980161718
[79,] -0.920247287 -0.351474847
[80,] -0.286167357 -0.920247287
[81,] -0.299623332 -0.286167357
[82,] 0.652203370 -0.299623332
[83,] 0.870856018 0.652203370
[84,] -0.376690712 0.870856018
[85,] -0.355544055 -0.376690712
[86,] 0.503334406 -0.355544055
[87,] 0.887870938 0.503334406
[88,] 0.259460709 0.887870938
[89,] 0.538001058 0.259460709
[90,] -0.122671695 0.538001058
[91,] -1.032530431 -0.122671695
[92,] -0.440061104 -1.032530431
[93,] -0.045509771 -0.440061104
[94,] 0.238185879 -0.045509771
[95,] 0.768456946 0.238185879
[96,] 0.319446400 0.768456946
[97,] 1.029697218 0.319446400
[98,] -0.009280791 1.029697218
[99,] 0.302814263 -0.009280791
[100,] 0.932123075 0.302814263
[101,] 0.490511003 0.932123075
[102,] 0.221544805 0.490511003
[103,] -0.683298661 0.221544805
[104,] 0.562511305 -0.683298661
[105,] 0.012448254 0.562511305
[106,] -0.460759617 0.012448254
[107,] -0.435857242 -0.460759617
[108,] -0.398892776 -0.435857242
[109,] -0.345150958 -0.398892776
[110,] 0.146315958 -0.345150958
[111,] -0.476275225 0.146315958
[112,] 0.485881349 -0.476275225
[113,] -0.680160096 0.485881349
[114,] -0.042958644 -0.680160096
[115,] -0.267030627 -0.042958644
[116,] -0.014734891 -0.267030627
[117,] 0.407135290 -0.014734891
[118,] 1.040646180 0.407135290
[119,] 0.147092129 1.040646180
[120,] 0.489100860 0.147092129
[121,] 0.152052760 0.489100860
[122,] -0.407617583 0.152052760
[123,] -0.322279965 -0.407617583
[124,] 0.390652337 -0.322279965
[125,] -0.787970703 0.390652337
[126,] 0.637263726 -0.787970703
[127,] -0.335786611 0.637263726
[128,] 0.097123073 -0.335786611
[129,] 0.517311131 0.097123073
[130,] 1.030082265 0.517311131
[131,] 0.525636009 1.030082265
[132,] 0.007479896 0.525636009
[133,] 0.034520170 0.007479896
[134,] 0.480376053 0.034520170
[135,] -1.415461688 0.480376053
[136,] -0.112143945 -1.415461688
[137,] 0.525665397 -0.112143945
[138,] -0.073020720 0.525665397
[139,] 0.202018632 -0.073020720
[140,] -0.155156757 0.202018632
[141,] -0.332537711 -0.155156757
[142,] 0.506947070 -0.332537711
[143,] -0.480124261 0.506947070
[144,] -0.400664523 -0.480124261
[145,] -0.699962162 -0.400664523
[146,] -1.479767421 -0.699962162
[147,] 0.105005152 -1.479767421
[148,] 0.586903066 0.105005152
[149,] -0.018545601 0.586903066
[150,] 0.639764182 -0.018545601
[151,] -1.189988851 0.639764182
> z <- as.data.frame(dum1)
> z
lag(myerror, k = 1) myerror
1 0.200787367 -0.213662840
2 0.711159559 0.200787367
3 -0.254492303 0.711159559
4 -0.926861982 -0.254492303
5 1.284115410 -0.926861982
6 0.618231501 1.284115410
7 -1.511485371 0.618231501
8 0.197440739 -1.511485371
9 1.417418095 0.197440739
10 0.571277653 1.417418095
11 -0.836414549 0.571277653
12 1.100066451 -0.836414549
13 -0.114348146 1.100066451
14 0.086614444 -0.114348146
15 0.175073584 0.086614444
16 -0.129494045 0.175073584
17 0.091774930 -0.129494045
18 -0.682883018 0.091774930
19 0.270179448 -0.682883018
20 -0.345088135 0.270179448
21 -0.397186731 -0.345088135
22 0.606330533 -0.397186731
23 0.360677551 0.606330533
24 0.115024569 0.360677551
25 0.584698864 0.115024569
26 1.121667324 0.584698864
27 -0.331918454 1.121667324
28 -2.871689922 -0.331918454
29 0.305075343 -2.871689922
30 0.144560124 0.305075343
31 -0.318632945 0.144560124
32 -0.684960526 -0.318632945
33 -0.022041154 -0.684960526
34 0.148238341 -0.022041154
35 0.101139277 0.148238341
36 -0.601632483 0.101139277
37 0.167809764 -0.601632483
38 -0.437638903 0.167809764
39 0.367128556 -0.437638903
40 -0.358783086 0.367128556
41 0.419388105 -0.358783086
42 0.318178039 0.419388105
43 -0.864283342 0.318178039
44 -0.980702360 -0.864283342
45 0.428471535 -0.980702360
46 -0.137896201 0.428471535
47 -0.798976465 -0.137896201
48 -0.489562895 -0.798976465
49 0.157245849 -0.489562895
50 0.261408107 0.157245849
51 -0.134587169 0.261408107
52 -0.852850424 -0.134587169
53 0.211344506 -0.852850424
54 0.484147006 0.211344506
55 -0.223216776 0.484147006
56 -0.663754613 -0.223216776
57 0.224630015 -0.663754613
58 -0.772048608 0.224630015
59 -0.571247547 -0.772048608
60 0.482494271 -0.571247547
61 0.101511499 0.482494271
62 0.190816460 0.101511499
63 -0.461323236 0.190816460
64 0.202262860 -0.461323236
65 -0.470823638 0.202262860
66 0.461609385 -0.470823638
67 -0.122258284 0.461609385
68 0.303692963 -0.122258284
69 -0.685093019 0.303692963
70 1.239414835 -0.685093019
71 0.471007921 1.239414835
72 -0.545781201 0.471007921
73 0.074804428 -0.545781201
74 0.093221034 0.074804428
75 -0.046379911 0.093221034
76 0.519210606 -0.046379911
77 0.980161718 0.519210606
78 -0.351474847 0.980161718
79 -0.920247287 -0.351474847
80 -0.286167357 -0.920247287
81 -0.299623332 -0.286167357
82 0.652203370 -0.299623332
83 0.870856018 0.652203370
84 -0.376690712 0.870856018
85 -0.355544055 -0.376690712
86 0.503334406 -0.355544055
87 0.887870938 0.503334406
88 0.259460709 0.887870938
89 0.538001058 0.259460709
90 -0.122671695 0.538001058
91 -1.032530431 -0.122671695
92 -0.440061104 -1.032530431
93 -0.045509771 -0.440061104
94 0.238185879 -0.045509771
95 0.768456946 0.238185879
96 0.319446400 0.768456946
97 1.029697218 0.319446400
98 -0.009280791 1.029697218
99 0.302814263 -0.009280791
100 0.932123075 0.302814263
101 0.490511003 0.932123075
102 0.221544805 0.490511003
103 -0.683298661 0.221544805
104 0.562511305 -0.683298661
105 0.012448254 0.562511305
106 -0.460759617 0.012448254
107 -0.435857242 -0.460759617
108 -0.398892776 -0.435857242
109 -0.345150958 -0.398892776
110 0.146315958 -0.345150958
111 -0.476275225 0.146315958
112 0.485881349 -0.476275225
113 -0.680160096 0.485881349
114 -0.042958644 -0.680160096
115 -0.267030627 -0.042958644
116 -0.014734891 -0.267030627
117 0.407135290 -0.014734891
118 1.040646180 0.407135290
119 0.147092129 1.040646180
120 0.489100860 0.147092129
121 0.152052760 0.489100860
122 -0.407617583 0.152052760
123 -0.322279965 -0.407617583
124 0.390652337 -0.322279965
125 -0.787970703 0.390652337
126 0.637263726 -0.787970703
127 -0.335786611 0.637263726
128 0.097123073 -0.335786611
129 0.517311131 0.097123073
130 1.030082265 0.517311131
131 0.525636009 1.030082265
132 0.007479896 0.525636009
133 0.034520170 0.007479896
134 0.480376053 0.034520170
135 -1.415461688 0.480376053
136 -0.112143945 -1.415461688
137 0.525665397 -0.112143945
138 -0.073020720 0.525665397
139 0.202018632 -0.073020720
140 -0.155156757 0.202018632
141 -0.332537711 -0.155156757
142 0.506947070 -0.332537711
143 -0.480124261 0.506947070
144 -0.400664523 -0.480124261
145 -0.699962162 -0.400664523
146 -1.479767421 -0.699962162
147 0.105005152 -1.479767421
148 0.586903066 0.105005152
149 -0.018545601 0.586903066
150 0.639764182 -0.018545601
151 -1.189988851 0.639764182
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device
1
> postscript(file="/var/www/html/rcomp/tmp/7kynt1291380412.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556)
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device
1
> postscript(file="/var/www/html/rcomp/tmp/8kynt1291380412.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556)
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device
1
> postscript(file="/var/www/html/rcomp/tmp/9kynt1291380412.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556)
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device
1
> if (n > n25) {
+ postscript(file="/var/www/html/rcomp/tmp/10dqnf1291380412.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556)
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device
1
>
> #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/rcomp/createtable")
>
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/11yql21291380412.tab")
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/122r1q1291380412.tab")
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/13gizz1291380412.tab")
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/141jg51291380412.tab")
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/15usxq1291380412.tab")
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/16qkvz1291380412.tab")
+ }
>
> try(system("convert tmp/1o7731291380412.ps tmp/1o7731291380412.png",intern=TRUE))
character(0)
> try(system("convert tmp/2o7731291380412.ps tmp/2o7731291380412.png",intern=TRUE))
character(0)
> try(system("convert tmp/3zypo1291380412.ps tmp/3zypo1291380412.png",intern=TRUE))
character(0)
> try(system("convert tmp/4zypo1291380412.ps tmp/4zypo1291380412.png",intern=TRUE))
character(0)
> try(system("convert tmp/5zypo1291380412.ps tmp/5zypo1291380412.png",intern=TRUE))
character(0)
> try(system("convert tmp/6spor1291380412.ps tmp/6spor1291380412.png",intern=TRUE))
character(0)
> try(system("convert tmp/7kynt1291380412.ps tmp/7kynt1291380412.png",intern=TRUE))
character(0)
> try(system("convert tmp/8kynt1291380412.ps tmp/8kynt1291380412.png",intern=TRUE))
character(0)
> try(system("convert tmp/9kynt1291380412.ps tmp/9kynt1291380412.png",intern=TRUE))
character(0)
> try(system("convert tmp/10dqnf1291380412.ps tmp/10dqnf1291380412.png",intern=TRUE))
character(0)
>
>
> proc.time()
user system elapsed
4.082 1.760 14.491