R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(1.79,194.9,1.95,195.5,2.26,196,2.04,196.2,2.16,196.2,2.75,196.2,2.79,196.2,2.88,197,3.36,197.7,2.97,198,3.1,198.2,2.49,198.5,2.2,198.6,2.25,199.5,2.09,200,2.79,201.3,3.14,202.2,2.93,202.9,2.65,203.5,2.67,203.5,2.26,204,2.35,204.1,2.13,204.3,2.18,204.5,2.9,204.8,2.63,205.1,2.67,205.7,1.81,206.5,1.33,206.9,0.88,207.1,1.28,207.8,1.26,208,1.26,208.5,1.29,208.6,1.1,209,1.37,209.1,1.21,209.7,1.74,209.8,1.76,209.9,1.48,210,1.04,210.8,1.62,211.4,1.49,211.7,1.79,212,1.8,212.2,1.58,212.4,1.86,212.9,1.74,213.4,1.59,213.7,1.26,214,1.13,214.3,1.92,214.8,2.61,215,2.26,215.9,2.41,216.4,2.26,216.9,2.03,217.2,2.86,217.5,2.55,217.9,2.27,218.1,2.26,218.6,2.57,218.9,3.07,219.3,2.76,220.4,2.51,220.9,2.87,221,3.14,221.8,3.11,222,3.16,222.2,2.47,222.5,2.57,222.9,2.89,223.1),dim=c(2,72),dimnames=list(c('Xt','Yt'),1:72)) > y <- array(NA,dim=c(2,72),dimnames=list(c('Xt','Yt'),1:72)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'No Linear Trend' > par2 = 'Do not include Seasonal Dummies' > par1 = '1' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > library(lmtest) Loading required package: zoo Attaching package: 'zoo' The following object(s) are masked from package:base : as.Date.numeric > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x Xt Yt 1 1.79 194.9 2 1.95 195.5 3 2.26 196.0 4 2.04 196.2 5 2.16 196.2 6 2.75 196.2 7 2.79 196.2 8 2.88 197.0 9 3.36 197.7 10 2.97 198.0 11 3.10 198.2 12 2.49 198.5 13 2.20 198.6 14 2.25 199.5 15 2.09 200.0 16 2.79 201.3 17 3.14 202.2 18 2.93 202.9 19 2.65 203.5 20 2.67 203.5 21 2.26 204.0 22 2.35 204.1 23 2.13 204.3 24 2.18 204.5 25 2.90 204.8 26 2.63 205.1 27 2.67 205.7 28 1.81 206.5 29 1.33 206.9 30 0.88 207.1 31 1.28 207.8 32 1.26 208.0 33 1.26 208.5 34 1.29 208.6 35 1.10 209.0 36 1.37 209.1 37 1.21 209.7 38 1.74 209.8 39 1.76 209.9 40 1.48 210.0 41 1.04 210.8 42 1.62 211.4 43 1.49 211.7 44 1.79 212.0 45 1.80 212.2 46 1.58 212.4 47 1.86 212.9 48 1.74 213.4 49 1.59 213.7 50 1.26 214.0 51 1.13 214.3 52 1.92 214.8 53 2.61 215.0 54 2.26 215.9 55 2.41 216.4 56 2.26 216.9 57 2.03 217.2 58 2.86 217.5 59 2.55 217.9 60 2.27 218.1 61 2.26 218.6 62 2.57 218.9 63 3.07 219.3 64 2.76 220.4 65 2.51 220.9 66 2.87 221.0 67 3.14 221.8 68 3.11 222.0 69 3.16 222.2 70 2.47 222.5 71 2.57 222.9 72 2.89 223.1 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) Yt 2.012803 0.000842 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -1.30718 -0.45021 0.06499 0.50480 1.18074 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2.012803 1.908997 1.054 0.295 Yt 0.000842 0.009121 0.092 0.927 Residual standard error: 0.6416 on 70 degrees of freedom Multiple R-squared: 0.0001217, Adjusted R-squared: -0.01416 F-statistic: 0.008522 on 1 and 70 DF, p-value: 0.9267 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 0.006891756 0.0137835126 0.9931082437 [2,] 0.045648249 0.0912964974 0.9543517513 [3,] 0.044766741 0.0895334815 0.9552332593 [4,] 0.018625927 0.0372518543 0.9813740728 [5,] 0.008713841 0.0174276825 0.9912861588 [6,] 0.008921157 0.0178423140 0.9910788430 [7,] 0.005630786 0.0112615711 0.9943692144 [8,] 0.027129295 0.0542585900 0.9728707050 [9,] 0.072044465 0.1440889310 0.9279555345 [10,] 0.103617709 0.2072354186 0.8963822907 [11,] 0.125407078 0.2508141557 0.8745929222 [12,] 0.099897976 0.1997959521 0.9001020240 [13,] 0.105369263 0.2107385267 0.8946307366 [14,] 0.102100330 0.2042006594 0.8978996703 [15,] 0.104889388 0.2097787759 0.8951106120 [16,] 0.110323018 0.2206460351 0.8896769825 [17,] 0.138202211 0.2764044213 0.8617977894 [18,] 0.152354301 0.3047086026 0.8476456987 [19,] 0.179577876 0.3591557518 0.8204221241 [20,] 0.200068045 0.4001360896 0.7999319552 [21,] 0.392990125 0.7859802508 0.6070098746 [22,] 0.627120286 0.7457594276 0.3728797138 [23,] 0.933171941 0.1336561174 0.0668280587 [24,] 0.984162966 0.0316740682 0.0158370341 [25,] 0.996679819 0.0066403628 0.0033201814 [26,] 0.999612680 0.0007746407 0.0003873204 [27,] 0.999705206 0.0005895881 0.0002947940 [28,] 0.999711831 0.0005763382 0.0002881691 [29,] 0.999647001 0.0007059977 0.0003529988 [30,] 0.999508095 0.0009838092 0.0004919046 [31,] 0.999420859 0.0011582815 0.0005791408 [32,] 0.999037814 0.0019243712 0.0009621856 [33,] 0.998562654 0.0028746912 0.0014373456 [34,] 0.998227192 0.0035456151 0.0017728075 [35,] 0.998060839 0.0038783212 0.0019391606 [36,] 0.996852077 0.0062958453 0.0031479226 [37,] 0.996826463 0.0063470743 0.0031735371 [38,] 0.994776920 0.0104461602 0.0052230801 [39,] 0.991392629 0.0172147417 0.0086073709 [40,] 0.988069433 0.0238611340 0.0119305670 [41,] 0.983694882 0.0326102352 0.0163051176 [42,] 0.974597159 0.0508056824 0.0254028412 [43,] 0.966730052 0.0665398961 0.0332699481 [44,] 0.952012187 0.0959756259 0.0479878129 [45,] 0.934080933 0.1318381349 0.0659190674 [46,] 0.952653454 0.0946930919 0.0473465460 [47,] 0.993520104 0.0129597916 0.0064798958 [48,] 0.993398002 0.0132039961 0.0066019981 [49,] 0.996277569 0.0074448624 0.0037224312 [50,] 0.994663023 0.0106739544 0.0053369772 [51,] 0.992821083 0.0143578335 0.0071789168 [52,] 0.989394526 0.0212109483 0.0106054741 [53,] 0.991401095 0.0171978093 0.0085989046 [54,] 0.993484770 0.0130304610 0.0065152305 [55,] 0.989084541 0.0218309183 0.0109154592 [56,] 0.984488369 0.0310232627 0.0155116314 [57,] 0.987048361 0.0259032788 0.0129516394 [58,] 0.983532410 0.0329351797 0.0164675898 [59,] 0.975252748 0.0494945034 0.0247472517 [60,] 0.951299916 0.0974001687 0.0487000844 [61,] 0.956903954 0.0861920913 0.0430960457 [62,] 0.947039232 0.1059215350 0.0529607675 [63,] 0.873548719 0.2529025624 0.1264512812 > postscript(file="/var/www/html/rcomp/tmp/1g9po1291415732.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/2g9po1291415732.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/3g9po1291415732.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/49i791291415732.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/59i791291415732.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 72 Frequency = 1 1 2 3 4 5 6 -0.386904743 -0.227409929 0.082169082 -0.137999314 -0.017999314 0.572000686 7 8 9 10 11 12 0.612000686 0.701327104 1.180737720 0.790485127 0.920316731 0.310064138 13 14 15 16 17 18 0.019979940 0.069222161 -0.091198828 0.607706601 0.956948822 0.746359437 19 20 21 22 23 24 0.465854251 0.485854251 0.075433262 0.165349064 -0.054819331 -0.004987727 25 26 27 28 29 30 0.714759680 0.444507087 0.484001900 -0.376671682 -0.857008473 -1.307176868 31 32 33 34 35 36 -0.907766252 -0.927934648 -0.928355636 -0.898439834 -1.088776625 -0.818860823 37 38 39 40 41 42 -0.979366009 -0.449450207 -0.429534405 -0.709618603 -1.150292185 -0.570797371 43 44 45 46 47 48 -0.701049964 -0.401302558 -0.391470953 -0.611639349 -0.332060337 -0.452481326 49 50 51 52 53 54 -0.602733919 -0.932986513 -1.063239106 -0.273660095 0.416171510 0.065413730 55 56 57 58 59 60 0.214992742 0.064571753 -0.165680840 0.664066566 0.353729775 0.073561380 61 62 63 64 65 66 0.063140391 0.372887798 0.872551007 0.561624832 0.311203843 0.671119645 67 68 69 70 71 72 0.940446063 0.910277668 0.960109272 0.269856679 0.369519888 0.689351493 > postscript(file="/var/www/html/rcomp/tmp/69i791291415732.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 72 Frequency = 1 lag(myerror, k = 1) myerror 0 -0.386904743 NA 1 -0.227409929 -0.386904743 2 0.082169082 -0.227409929 3 -0.137999314 0.082169082 4 -0.017999314 -0.137999314 5 0.572000686 -0.017999314 6 0.612000686 0.572000686 7 0.701327104 0.612000686 8 1.180737720 0.701327104 9 0.790485127 1.180737720 10 0.920316731 0.790485127 11 0.310064138 0.920316731 12 0.019979940 0.310064138 13 0.069222161 0.019979940 14 -0.091198828 0.069222161 15 0.607706601 -0.091198828 16 0.956948822 0.607706601 17 0.746359437 0.956948822 18 0.465854251 0.746359437 19 0.485854251 0.465854251 20 0.075433262 0.485854251 21 0.165349064 0.075433262 22 -0.054819331 0.165349064 23 -0.004987727 -0.054819331 24 0.714759680 -0.004987727 25 0.444507087 0.714759680 26 0.484001900 0.444507087 27 -0.376671682 0.484001900 28 -0.857008473 -0.376671682 29 -1.307176868 -0.857008473 30 -0.907766252 -1.307176868 31 -0.927934648 -0.907766252 32 -0.928355636 -0.927934648 33 -0.898439834 -0.928355636 34 -1.088776625 -0.898439834 35 -0.818860823 -1.088776625 36 -0.979366009 -0.818860823 37 -0.449450207 -0.979366009 38 -0.429534405 -0.449450207 39 -0.709618603 -0.429534405 40 -1.150292185 -0.709618603 41 -0.570797371 -1.150292185 42 -0.701049964 -0.570797371 43 -0.401302558 -0.701049964 44 -0.391470953 -0.401302558 45 -0.611639349 -0.391470953 46 -0.332060337 -0.611639349 47 -0.452481326 -0.332060337 48 -0.602733919 -0.452481326 49 -0.932986513 -0.602733919 50 -1.063239106 -0.932986513 51 -0.273660095 -1.063239106 52 0.416171510 -0.273660095 53 0.065413730 0.416171510 54 0.214992742 0.065413730 55 0.064571753 0.214992742 56 -0.165680840 0.064571753 57 0.664066566 -0.165680840 58 0.353729775 0.664066566 59 0.073561380 0.353729775 60 0.063140391 0.073561380 61 0.372887798 0.063140391 62 0.872551007 0.372887798 63 0.561624832 0.872551007 64 0.311203843 0.561624832 65 0.671119645 0.311203843 66 0.940446063 0.671119645 67 0.910277668 0.940446063 68 0.960109272 0.910277668 69 0.269856679 0.960109272 70 0.369519888 0.269856679 71 0.689351493 0.369519888 72 NA 0.689351493 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] -0.227409929 -0.386904743 [2,] 0.082169082 -0.227409929 [3,] -0.137999314 0.082169082 [4,] -0.017999314 -0.137999314 [5,] 0.572000686 -0.017999314 [6,] 0.612000686 0.572000686 [7,] 0.701327104 0.612000686 [8,] 1.180737720 0.701327104 [9,] 0.790485127 1.180737720 [10,] 0.920316731 0.790485127 [11,] 0.310064138 0.920316731 [12,] 0.019979940 0.310064138 [13,] 0.069222161 0.019979940 [14,] -0.091198828 0.069222161 [15,] 0.607706601 -0.091198828 [16,] 0.956948822 0.607706601 [17,] 0.746359437 0.956948822 [18,] 0.465854251 0.746359437 [19,] 0.485854251 0.465854251 [20,] 0.075433262 0.485854251 [21,] 0.165349064 0.075433262 [22,] -0.054819331 0.165349064 [23,] -0.004987727 -0.054819331 [24,] 0.714759680 -0.004987727 [25,] 0.444507087 0.714759680 [26,] 0.484001900 0.444507087 [27,] -0.376671682 0.484001900 [28,] -0.857008473 -0.376671682 [29,] -1.307176868 -0.857008473 [30,] -0.907766252 -1.307176868 [31,] -0.927934648 -0.907766252 [32,] -0.928355636 -0.927934648 [33,] -0.898439834 -0.928355636 [34,] -1.088776625 -0.898439834 [35,] -0.818860823 -1.088776625 [36,] -0.979366009 -0.818860823 [37,] -0.449450207 -0.979366009 [38,] -0.429534405 -0.449450207 [39,] -0.709618603 -0.429534405 [40,] -1.150292185 -0.709618603 [41,] -0.570797371 -1.150292185 [42,] -0.701049964 -0.570797371 [43,] -0.401302558 -0.701049964 [44,] -0.391470953 -0.401302558 [45,] -0.611639349 -0.391470953 [46,] -0.332060337 -0.611639349 [47,] -0.452481326 -0.332060337 [48,] -0.602733919 -0.452481326 [49,] -0.932986513 -0.602733919 [50,] -1.063239106 -0.932986513 [51,] -0.273660095 -1.063239106 [52,] 0.416171510 -0.273660095 [53,] 0.065413730 0.416171510 [54,] 0.214992742 0.065413730 [55,] 0.064571753 0.214992742 [56,] -0.165680840 0.064571753 [57,] 0.664066566 -0.165680840 [58,] 0.353729775 0.664066566 [59,] 0.073561380 0.353729775 [60,] 0.063140391 0.073561380 [61,] 0.372887798 0.063140391 [62,] 0.872551007 0.372887798 [63,] 0.561624832 0.872551007 [64,] 0.311203843 0.561624832 [65,] 0.671119645 0.311203843 [66,] 0.940446063 0.671119645 [67,] 0.910277668 0.940446063 [68,] 0.960109272 0.910277668 [69,] 0.269856679 0.960109272 [70,] 0.369519888 0.269856679 [71,] 0.689351493 0.369519888 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 -0.227409929 -0.386904743 2 0.082169082 -0.227409929 3 -0.137999314 0.082169082 4 -0.017999314 -0.137999314 5 0.572000686 -0.017999314 6 0.612000686 0.572000686 7 0.701327104 0.612000686 8 1.180737720 0.701327104 9 0.790485127 1.180737720 10 0.920316731 0.790485127 11 0.310064138 0.920316731 12 0.019979940 0.310064138 13 0.069222161 0.019979940 14 -0.091198828 0.069222161 15 0.607706601 -0.091198828 16 0.956948822 0.607706601 17 0.746359437 0.956948822 18 0.465854251 0.746359437 19 0.485854251 0.465854251 20 0.075433262 0.485854251 21 0.165349064 0.075433262 22 -0.054819331 0.165349064 23 -0.004987727 -0.054819331 24 0.714759680 -0.004987727 25 0.444507087 0.714759680 26 0.484001900 0.444507087 27 -0.376671682 0.484001900 28 -0.857008473 -0.376671682 29 -1.307176868 -0.857008473 30 -0.907766252 -1.307176868 31 -0.927934648 -0.907766252 32 -0.928355636 -0.927934648 33 -0.898439834 -0.928355636 34 -1.088776625 -0.898439834 35 -0.818860823 -1.088776625 36 -0.979366009 -0.818860823 37 -0.449450207 -0.979366009 38 -0.429534405 -0.449450207 39 -0.709618603 -0.429534405 40 -1.150292185 -0.709618603 41 -0.570797371 -1.150292185 42 -0.701049964 -0.570797371 43 -0.401302558 -0.701049964 44 -0.391470953 -0.401302558 45 -0.611639349 -0.391470953 46 -0.332060337 -0.611639349 47 -0.452481326 -0.332060337 48 -0.602733919 -0.452481326 49 -0.932986513 -0.602733919 50 -1.063239106 -0.932986513 51 -0.273660095 -1.063239106 52 0.416171510 -0.273660095 53 0.065413730 0.416171510 54 0.214992742 0.065413730 55 0.064571753 0.214992742 56 -0.165680840 0.064571753 57 0.664066566 -0.165680840 58 0.353729775 0.664066566 59 0.073561380 0.353729775 60 0.063140391 0.073561380 61 0.372887798 0.063140391 62 0.872551007 0.372887798 63 0.561624832 0.872551007 64 0.311203843 0.561624832 65 0.671119645 0.311203843 66 0.940446063 0.671119645 67 0.910277668 0.940446063 68 0.960109272 0.910277668 69 0.269856679 0.960109272 70 0.369519888 0.269856679 71 0.689351493 0.369519888 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/71aou1291415732.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/8cj5x1291415732.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/9cj5x1291415732.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/www/html/rcomp/tmp/10ns4i1291415732.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/118bl61291415732.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/12bb1c1291415732.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/137lhk1291415732.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/14t4yr1291415732.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/15w4wx1291415732.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/16indk1291415732.tab") + } > > try(system("convert tmp/1g9po1291415732.ps tmp/1g9po1291415732.png",intern=TRUE)) character(0) > try(system("convert tmp/2g9po1291415732.ps tmp/2g9po1291415732.png",intern=TRUE)) character(0) > try(system("convert tmp/3g9po1291415732.ps tmp/3g9po1291415732.png",intern=TRUE)) character(0) > try(system("convert tmp/49i791291415732.ps tmp/49i791291415732.png",intern=TRUE)) character(0) > try(system("convert tmp/59i791291415732.ps tmp/59i791291415732.png",intern=TRUE)) character(0) > try(system("convert tmp/69i791291415732.ps tmp/69i791291415732.png",intern=TRUE)) character(0) > try(system("convert tmp/71aou1291415732.ps tmp/71aou1291415732.png",intern=TRUE)) character(0) > try(system("convert tmp/8cj5x1291415732.ps tmp/8cj5x1291415732.png",intern=TRUE)) character(0) > try(system("convert tmp/9cj5x1291415732.ps tmp/9cj5x1291415732.png",intern=TRUE)) character(0) > try(system("convert tmp/10ns4i1291415732.ps tmp/10ns4i1291415732.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 2.605 1.579 6.109