R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(1.79,194.9,1.95,195.5,2.26,196.0,2.04,196.2,2.16,196.2,2.75,196.2,2.79,196.2,2.88,197.0,3.36,197.7,2.97,198.0,3.10,198.2,2.49,198.5,2.2,198.6,2.25,199.5,2.09,200,2.79,201.3,3.14,202.2,2.93,202.9,2.65,203.5,2.67,203.5,2.26,204,2.35,204.1,2.13,204.3,2.18,204.5,2.9,204.8,2.63,205.1,2.67,205.7,1.81,206.5,1.33,206.9,0.88,207.1,1.28,207.8,1.26,208,1.26,208.5,1.29,208.6,1.1,209,1.37,209.1,1.21,209.7,1.74,209.8,1.76,209.9,1.48,210,1.04,210.8,1.62,211.4,1.49,211.7,1.79,212,1.8,212.2,1.58,212.4,1.86,212.9,1.74,213.4,1.59,213.7,1.26,214,1.13,214.3,1.92,214.8,2.61,215,2.26,215.9,2.41,216.4,2.26,216.9,2.03,217.2,2.86,217.5,2.55,217.9,2.27,218.1,2.26,218.6,2.57,218.9,3.07,219.3,2.76,220.4,2.51,220.9,2.87,221,3.14,221.8,3.11,222,3.16,222.2,2.47,222.5,2.57,222.9,2.89,223.1),dim=c(2,72),dimnames=list(c('Yt','Xt'),1:72)) > y <- array(NA,dim=c(2,72),dimnames=list(c('Yt','Xt'),1:72)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'No Linear Trend' > par2 = 'Include Monthly Dummies' > par1 = '1' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > library(lmtest) Loading required package: zoo Attaching package: 'zoo' The following object(s) are masked from package:base : as.Date.numeric > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x Yt Xt M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 1 1.79 194.9 1 0 0 0 0 0 0 0 0 0 0 2 1.95 195.5 0 1 0 0 0 0 0 0 0 0 0 3 2.26 196.0 0 0 1 0 0 0 0 0 0 0 0 4 2.04 196.2 0 0 0 1 0 0 0 0 0 0 0 5 2.16 196.2 0 0 0 0 1 0 0 0 0 0 0 6 2.75 196.2 0 0 0 0 0 1 0 0 0 0 0 7 2.79 196.2 0 0 0 0 0 0 1 0 0 0 0 8 2.88 197.0 0 0 0 0 0 0 0 1 0 0 0 9 3.36 197.7 0 0 0 0 0 0 0 0 1 0 0 10 2.97 198.0 0 0 0 0 0 0 0 0 0 1 0 11 3.10 198.2 0 0 0 0 0 0 0 0 0 0 1 12 2.49 198.5 0 0 0 0 0 0 0 0 0 0 0 13 2.20 198.6 1 0 0 0 0 0 0 0 0 0 0 14 2.25 199.5 0 1 0 0 0 0 0 0 0 0 0 15 2.09 200.0 0 0 1 0 0 0 0 0 0 0 0 16 2.79 201.3 0 0 0 1 0 0 0 0 0 0 0 17 3.14 202.2 0 0 0 0 1 0 0 0 0 0 0 18 2.93 202.9 0 0 0 0 0 1 0 0 0 0 0 19 2.65 203.5 0 0 0 0 0 0 1 0 0 0 0 20 2.67 203.5 0 0 0 0 0 0 0 1 0 0 0 21 2.26 204.0 0 0 0 0 0 0 0 0 1 0 0 22 2.35 204.1 0 0 0 0 0 0 0 0 0 1 0 23 2.13 204.3 0 0 0 0 0 0 0 0 0 0 1 24 2.18 204.5 0 0 0 0 0 0 0 0 0 0 0 25 2.90 204.8 1 0 0 0 0 0 0 0 0 0 0 26 2.63 205.1 0 1 0 0 0 0 0 0 0 0 0 27 2.67 205.7 0 0 1 0 0 0 0 0 0 0 0 28 1.81 206.5 0 0 0 1 0 0 0 0 0 0 0 29 1.33 206.9 0 0 0 0 1 0 0 0 0 0 0 30 0.88 207.1 0 0 0 0 0 1 0 0 0 0 0 31 1.28 207.8 0 0 0 0 0 0 1 0 0 0 0 32 1.26 208.0 0 0 0 0 0 0 0 1 0 0 0 33 1.26 208.5 0 0 0 0 0 0 0 0 1 0 0 34 1.29 208.6 0 0 0 0 0 0 0 0 0 1 0 35 1.10 209.0 0 0 0 0 0 0 0 0 0 0 1 36 1.37 209.1 0 0 0 0 0 0 0 0 0 0 0 37 1.21 209.7 1 0 0 0 0 0 0 0 0 0 0 38 1.74 209.8 0 1 0 0 0 0 0 0 0 0 0 39 1.76 209.9 0 0 1 0 0 0 0 0 0 0 0 40 1.48 210.0 0 0 0 1 0 0 0 0 0 0 0 41 1.04 210.8 0 0 0 0 1 0 0 0 0 0 0 42 1.62 211.4 0 0 0 0 0 1 0 0 0 0 0 43 1.49 211.7 0 0 0 0 0 0 1 0 0 0 0 44 1.79 212.0 0 0 0 0 0 0 0 1 0 0 0 45 1.80 212.2 0 0 0 0 0 0 0 0 1 0 0 46 1.58 212.4 0 0 0 0 0 0 0 0 0 1 0 47 1.86 212.9 0 0 0 0 0 0 0 0 0 0 1 48 1.74 213.4 0 0 0 0 0 0 0 0 0 0 0 49 1.59 213.7 1 0 0 0 0 0 0 0 0 0 0 50 1.26 214.0 0 1 0 0 0 0 0 0 0 0 0 51 1.13 214.3 0 0 1 0 0 0 0 0 0 0 0 52 1.92 214.8 0 0 0 1 0 0 0 0 0 0 0 53 2.61 215.0 0 0 0 0 1 0 0 0 0 0 0 54 2.26 215.9 0 0 0 0 0 1 0 0 0 0 0 55 2.41 216.4 0 0 0 0 0 0 1 0 0 0 0 56 2.26 216.9 0 0 0 0 0 0 0 1 0 0 0 57 2.03 217.2 0 0 0 0 0 0 0 0 1 0 0 58 2.86 217.5 0 0 0 0 0 0 0 0 0 1 0 59 2.55 217.9 0 0 0 0 0 0 0 0 0 0 1 60 2.27 218.1 0 0 0 0 0 0 0 0 0 0 0 61 2.26 218.6 1 0 0 0 0 0 0 0 0 0 0 62 2.57 218.9 0 1 0 0 0 0 0 0 0 0 0 63 3.07 219.3 0 0 1 0 0 0 0 0 0 0 0 64 2.76 220.4 0 0 0 1 0 0 0 0 0 0 0 65 2.51 220.9 0 0 0 0 1 0 0 0 0 0 0 66 2.87 221.0 0 0 0 0 0 1 0 0 0 0 0 67 3.14 221.8 0 0 0 0 0 0 1 0 0 0 0 68 3.11 222.0 0 0 0 0 0 0 0 1 0 0 0 69 3.16 222.2 0 0 0 0 0 0 0 0 1 0 0 70 2.47 222.5 0 0 0 0 0 0 0 0 0 1 0 71 2.57 222.9 0 0 0 0 0 0 0 0 0 0 1 72 2.89 223.1 0 0 0 0 0 0 0 0 0 0 0 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) Xt M1 M2 M3 M4 2.2929372 -0.0006455 -0.1678401 -0.0925711 0.0043537 -0.0252160 M5 M6 M7 M8 M9 M10 -0.0265814 0.0603542 0.1356662 0.1708813 0.1544729 0.0962794 M11 0.0615053 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -1.33961 -0.43900 0.06764 0.51403 1.04020 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2.2929372 2.1228813 1.080 0.284 Xt -0.0006455 0.0099664 -0.065 0.949 M1 -0.1678401 0.4010866 -0.418 0.677 M2 -0.0925711 0.4006539 -0.231 0.818 M3 0.0043537 0.4002785 0.011 0.991 M4 -0.0252160 0.3997405 -0.063 0.950 M5 -0.0265814 0.3994292 -0.067 0.947 M6 0.0603542 0.3991969 0.151 0.880 M7 0.1356662 0.3989813 0.340 0.735 M8 0.1708813 0.3988665 0.428 0.670 M9 0.1544729 0.3987652 0.387 0.700 M10 0.0962794 0.3987270 0.241 0.810 M11 0.0615053 0.3986899 0.154 0.878 Residual standard error: 0.6905 on 59 degrees of freedom Multiple R-squared: 0.02364, Adjusted R-squared: -0.1749 F-statistic: 0.119 on 12 and 59 DF, p-value: 0.9999 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 0.05648573 0.112971459 0.943514270 [2,] 0.03799457 0.075989143 0.962005429 [3,] 0.03246627 0.064932547 0.967533727 [4,] 0.04337938 0.086758761 0.956620619 [5,] 0.04227744 0.084554876 0.957722562 [6,] 0.17233043 0.344660856 0.827669572 [7,] 0.17845825 0.356916506 0.821541747 [8,] 0.23336021 0.466720419 0.766639791 [9,] 0.20009841 0.400196820 0.799901590 [10,] 0.51729250 0.965415002 0.482707501 [11,] 0.71987252 0.560254966 0.280127483 [12,] 0.91945078 0.161098442 0.080549221 [13,] 0.95658749 0.086825025 0.043412512 [14,] 0.98752622 0.024947554 0.012473777 [15,] 0.99857049 0.002859018 0.001429509 [16,] 0.99884711 0.002305779 0.001152890 [17,] 0.99894980 0.002100406 0.001050203 [18,] 0.99889839 0.002203216 0.001101608 [19,] 0.99846104 0.003077918 0.001538959 [20,] 0.99801142 0.003977166 0.001988583 [21,] 0.99646293 0.007074148 0.003537074 [22,] 0.99351235 0.012975291 0.006487645 [23,] 0.99343383 0.013132338 0.006566169 [24,] 0.99224210 0.015515794 0.007757897 [25,] 0.98636761 0.027264773 0.013632387 [26,] 0.98559004 0.028819917 0.014409958 [27,] 0.97516735 0.049665304 0.024832652 [28,] 0.96406394 0.071872125 0.035936063 [29,] 0.94214541 0.115709186 0.057854593 [30,] 0.91121852 0.177562963 0.088781481 [31,] 0.86747536 0.265049290 0.132524645 [32,] 0.82208478 0.355830440 0.177915220 [33,] 0.75679737 0.486405251 0.243202626 [34,] 0.67632385 0.647352291 0.323676145 [35,] 0.65098021 0.698039584 0.349019792 [36,] 0.88190169 0.236196622 0.118098311 [37,] 0.84267615 0.314647698 0.157323849 [38,] 0.87348001 0.253039973 0.126519986 [39,] 0.79887957 0.402240857 0.201120429 [40,] 0.70325963 0.593480743 0.296740371 [41,] 0.59953012 0.800939760 0.400469880 > postscript(file="/var/www/html/rcomp/tmp/1jgk61291467829.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/2t71r1291467829.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/3t71r1291467829.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/4t71r1291467829.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/5mg0b1291467829.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 72 Frequency = 1 1 2 3 4 5 6 -0.20929403 -0.12417569 0.08922219 -0.10107903 0.02028641 0.52335080 7 8 9 10 11 12 0.48803882 0.54334004 1.04020035 0.70858747 0.87349065 0.32518959 13 14 15 16 17 18 0.20309423 0.17840621 -0.07819591 0.65221289 1.00415926 0.70767548 19 20 21 22 23 24 0.35275079 0.33753563 -0.05573316 0.09252487 -0.09257195 0.01906244 25 26 27 28 29 30 0.90709617 0.56202087 0.50548330 -0.32443064 -0.80280701 -1.33961353 31 32 33 34 35 36 -1.01447367 -1.06955974 -1.05282852 -0.96457049 -1.11953822 -0.78796837 37 38 39 40 41 42 -0.77974100 -0.32494540 -0.40180571 -0.65217148 -1.09028965 -0.59683798 43 44 45 46 47 48 -0.80195632 -0.53697784 -0.51044026 -0.67211769 -0.35702087 -0.41519283 49 50 51 52 53 54 -0.39715910 -0.80223441 -1.02896562 -0.20907320 0.48242134 0.04606665 55 56 57 58 59 60 0.12107741 -0.06381501 -0.27721289 0.61117423 0.33620651 0.11784090 61 62 63 64 65 66 0.27600373 0.51092842 0.91426175 0.63454146 0.38622964 0.65935858 67 68 69 70 71 72 0.85456298 0.78947691 0.85601448 0.22440161 0.35943388 0.74106827 > postscript(file="/var/www/html/rcomp/tmp/6mg0b1291467829.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 72 Frequency = 1 lag(myerror, k = 1) myerror 0 -0.20929403 NA 1 -0.12417569 -0.20929403 2 0.08922219 -0.12417569 3 -0.10107903 0.08922219 4 0.02028641 -0.10107903 5 0.52335080 0.02028641 6 0.48803882 0.52335080 7 0.54334004 0.48803882 8 1.04020035 0.54334004 9 0.70858747 1.04020035 10 0.87349065 0.70858747 11 0.32518959 0.87349065 12 0.20309423 0.32518959 13 0.17840621 0.20309423 14 -0.07819591 0.17840621 15 0.65221289 -0.07819591 16 1.00415926 0.65221289 17 0.70767548 1.00415926 18 0.35275079 0.70767548 19 0.33753563 0.35275079 20 -0.05573316 0.33753563 21 0.09252487 -0.05573316 22 -0.09257195 0.09252487 23 0.01906244 -0.09257195 24 0.90709617 0.01906244 25 0.56202087 0.90709617 26 0.50548330 0.56202087 27 -0.32443064 0.50548330 28 -0.80280701 -0.32443064 29 -1.33961353 -0.80280701 30 -1.01447367 -1.33961353 31 -1.06955974 -1.01447367 32 -1.05282852 -1.06955974 33 -0.96457049 -1.05282852 34 -1.11953822 -0.96457049 35 -0.78796837 -1.11953822 36 -0.77974100 -0.78796837 37 -0.32494540 -0.77974100 38 -0.40180571 -0.32494540 39 -0.65217148 -0.40180571 40 -1.09028965 -0.65217148 41 -0.59683798 -1.09028965 42 -0.80195632 -0.59683798 43 -0.53697784 -0.80195632 44 -0.51044026 -0.53697784 45 -0.67211769 -0.51044026 46 -0.35702087 -0.67211769 47 -0.41519283 -0.35702087 48 -0.39715910 -0.41519283 49 -0.80223441 -0.39715910 50 -1.02896562 -0.80223441 51 -0.20907320 -1.02896562 52 0.48242134 -0.20907320 53 0.04606665 0.48242134 54 0.12107741 0.04606665 55 -0.06381501 0.12107741 56 -0.27721289 -0.06381501 57 0.61117423 -0.27721289 58 0.33620651 0.61117423 59 0.11784090 0.33620651 60 0.27600373 0.11784090 61 0.51092842 0.27600373 62 0.91426175 0.51092842 63 0.63454146 0.91426175 64 0.38622964 0.63454146 65 0.65935858 0.38622964 66 0.85456298 0.65935858 67 0.78947691 0.85456298 68 0.85601448 0.78947691 69 0.22440161 0.85601448 70 0.35943388 0.22440161 71 0.74106827 0.35943388 72 NA 0.74106827 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] -0.12417569 -0.20929403 [2,] 0.08922219 -0.12417569 [3,] -0.10107903 0.08922219 [4,] 0.02028641 -0.10107903 [5,] 0.52335080 0.02028641 [6,] 0.48803882 0.52335080 [7,] 0.54334004 0.48803882 [8,] 1.04020035 0.54334004 [9,] 0.70858747 1.04020035 [10,] 0.87349065 0.70858747 [11,] 0.32518959 0.87349065 [12,] 0.20309423 0.32518959 [13,] 0.17840621 0.20309423 [14,] -0.07819591 0.17840621 [15,] 0.65221289 -0.07819591 [16,] 1.00415926 0.65221289 [17,] 0.70767548 1.00415926 [18,] 0.35275079 0.70767548 [19,] 0.33753563 0.35275079 [20,] -0.05573316 0.33753563 [21,] 0.09252487 -0.05573316 [22,] -0.09257195 0.09252487 [23,] 0.01906244 -0.09257195 [24,] 0.90709617 0.01906244 [25,] 0.56202087 0.90709617 [26,] 0.50548330 0.56202087 [27,] -0.32443064 0.50548330 [28,] -0.80280701 -0.32443064 [29,] -1.33961353 -0.80280701 [30,] -1.01447367 -1.33961353 [31,] -1.06955974 -1.01447367 [32,] -1.05282852 -1.06955974 [33,] -0.96457049 -1.05282852 [34,] -1.11953822 -0.96457049 [35,] -0.78796837 -1.11953822 [36,] -0.77974100 -0.78796837 [37,] -0.32494540 -0.77974100 [38,] -0.40180571 -0.32494540 [39,] -0.65217148 -0.40180571 [40,] -1.09028965 -0.65217148 [41,] -0.59683798 -1.09028965 [42,] -0.80195632 -0.59683798 [43,] -0.53697784 -0.80195632 [44,] -0.51044026 -0.53697784 [45,] -0.67211769 -0.51044026 [46,] -0.35702087 -0.67211769 [47,] -0.41519283 -0.35702087 [48,] -0.39715910 -0.41519283 [49,] -0.80223441 -0.39715910 [50,] -1.02896562 -0.80223441 [51,] -0.20907320 -1.02896562 [52,] 0.48242134 -0.20907320 [53,] 0.04606665 0.48242134 [54,] 0.12107741 0.04606665 [55,] -0.06381501 0.12107741 [56,] -0.27721289 -0.06381501 [57,] 0.61117423 -0.27721289 [58,] 0.33620651 0.61117423 [59,] 0.11784090 0.33620651 [60,] 0.27600373 0.11784090 [61,] 0.51092842 0.27600373 [62,] 0.91426175 0.51092842 [63,] 0.63454146 0.91426175 [64,] 0.38622964 0.63454146 [65,] 0.65935858 0.38622964 [66,] 0.85456298 0.65935858 [67,] 0.78947691 0.85456298 [68,] 0.85601448 0.78947691 [69,] 0.22440161 0.85601448 [70,] 0.35943388 0.22440161 [71,] 0.74106827 0.35943388 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 -0.12417569 -0.20929403 2 0.08922219 -0.12417569 3 -0.10107903 0.08922219 4 0.02028641 -0.10107903 5 0.52335080 0.02028641 6 0.48803882 0.52335080 7 0.54334004 0.48803882 8 1.04020035 0.54334004 9 0.70858747 1.04020035 10 0.87349065 0.70858747 11 0.32518959 0.87349065 12 0.20309423 0.32518959 13 0.17840621 0.20309423 14 -0.07819591 0.17840621 15 0.65221289 -0.07819591 16 1.00415926 0.65221289 17 0.70767548 1.00415926 18 0.35275079 0.70767548 19 0.33753563 0.35275079 20 -0.05573316 0.33753563 21 0.09252487 -0.05573316 22 -0.09257195 0.09252487 23 0.01906244 -0.09257195 24 0.90709617 0.01906244 25 0.56202087 0.90709617 26 0.50548330 0.56202087 27 -0.32443064 0.50548330 28 -0.80280701 -0.32443064 29 -1.33961353 -0.80280701 30 -1.01447367 -1.33961353 31 -1.06955974 -1.01447367 32 -1.05282852 -1.06955974 33 -0.96457049 -1.05282852 34 -1.11953822 -0.96457049 35 -0.78796837 -1.11953822 36 -0.77974100 -0.78796837 37 -0.32494540 -0.77974100 38 -0.40180571 -0.32494540 39 -0.65217148 -0.40180571 40 -1.09028965 -0.65217148 41 -0.59683798 -1.09028965 42 -0.80195632 -0.59683798 43 -0.53697784 -0.80195632 44 -0.51044026 -0.53697784 45 -0.67211769 -0.51044026 46 -0.35702087 -0.67211769 47 -0.41519283 -0.35702087 48 -0.39715910 -0.41519283 49 -0.80223441 -0.39715910 50 -1.02896562 -0.80223441 51 -0.20907320 -1.02896562 52 0.48242134 -0.20907320 53 0.04606665 0.48242134 54 0.12107741 0.04606665 55 -0.06381501 0.12107741 56 -0.27721289 -0.06381501 57 0.61117423 -0.27721289 58 0.33620651 0.61117423 59 0.11784090 0.33620651 60 0.27600373 0.11784090 61 0.51092842 0.27600373 62 0.91426175 0.51092842 63 0.63454146 0.91426175 64 0.38622964 0.63454146 65 0.65935858 0.38622964 66 0.85456298 0.65935858 67 0.78947691 0.85456298 68 0.85601448 0.78947691 69 0.22440161 0.85601448 70 0.35943388 0.22440161 71 0.74106827 0.35943388 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/7fq0x1291467829.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/8fq0x1291467829.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/9fq0x1291467829.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/www/html/rcomp/tmp/107zh01291467829.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/11b0fo1291467829.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/12w0wt1291467829.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/13sau21291467829.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/14ess81291467829.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/15htrw1291467829.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/162t7k1291467829.tab") + } > > try(system("convert tmp/1jgk61291467829.ps tmp/1jgk61291467829.png",intern=TRUE)) character(0) > try(system("convert tmp/2t71r1291467829.ps tmp/2t71r1291467829.png",intern=TRUE)) character(0) > try(system("convert tmp/3t71r1291467829.ps tmp/3t71r1291467829.png",intern=TRUE)) character(0) > try(system("convert tmp/4t71r1291467829.ps tmp/4t71r1291467829.png",intern=TRUE)) character(0) > try(system("convert tmp/5mg0b1291467829.ps tmp/5mg0b1291467829.png",intern=TRUE)) character(0) > try(system("convert tmp/6mg0b1291467829.ps tmp/6mg0b1291467829.png",intern=TRUE)) character(0) > try(system("convert tmp/7fq0x1291467829.ps tmp/7fq0x1291467829.png",intern=TRUE)) character(0) > try(system("convert tmp/8fq0x1291467829.ps tmp/8fq0x1291467829.png",intern=TRUE)) character(0) > try(system("convert tmp/9fq0x1291467829.ps tmp/9fq0x1291467829.png",intern=TRUE)) character(0) > try(system("convert tmp/107zh01291467829.ps tmp/107zh01291467829.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 2.606 1.645 8.264