R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(2.16 + ,196.2 + ,2.04 + ,2.26 + ,1.95 + ,1.79 + ,2.75 + ,196.2 + ,2.16 + ,2.04 + ,2.26 + ,1.95 + ,2.79 + ,196.2 + ,2.75 + ,2.16 + ,2.04 + ,2.26 + ,2.88 + ,197 + ,2.79 + ,2.75 + ,2.16 + ,2.04 + ,3.36 + ,197.7 + ,2.88 + ,2.79 + ,2.75 + ,2.16 + ,2.97 + ,198 + ,3.36 + ,2.88 + ,2.79 + ,2.75 + ,3.1 + ,198.2 + ,2.97 + ,3.36 + ,2.88 + ,2.79 + ,2.49 + ,198.5 + ,3.1 + ,2.97 + ,3.36 + ,2.88 + ,2.2 + ,198.6 + ,2.49 + ,3.1 + ,2.97 + ,3.36 + ,2.25 + ,199.5 + ,2.2 + ,2.49 + ,3.1 + ,2.97 + ,2.09 + ,200 + ,2.25 + ,2.2 + ,2.49 + ,3.1 + ,2.79 + ,201.3 + ,2.09 + ,2.25 + ,2.2 + ,2.49 + ,3.14 + ,202.2 + ,2.79 + ,2.09 + ,2.25 + ,2.2 + ,2.93 + ,202.9 + ,3.14 + ,2.79 + ,2.09 + ,2.25 + ,2.65 + ,203.5 + ,2.93 + ,3.14 + ,2.79 + ,2.09 + ,2.67 + ,203.5 + ,2.65 + ,2.93 + ,3.14 + ,2.79 + ,2.26 + ,204 + ,2.67 + ,2.65 + ,2.93 + ,3.14 + ,2.35 + ,204.1 + ,2.26 + ,2.67 + ,2.65 + ,2.93 + ,2.13 + ,204.3 + ,2.35 + ,2.26 + ,2.67 + ,2.65 + ,2.18 + ,204.5 + ,2.13 + ,2.35 + ,2.26 + ,2.67 + ,2.9 + ,204.8 + ,2.18 + ,2.13 + ,2.35 + ,2.26 + ,2.63 + ,205.1 + ,2.9 + ,2.18 + ,2.13 + ,2.35 + ,2.67 + ,205.7 + ,2.63 + ,2.9 + ,2.18 + ,2.13 + ,1.81 + ,206.5 + ,2.67 + ,2.63 + ,2.9 + ,2.18 + ,1.33 + ,206.9 + ,1.81 + ,2.67 + ,2.63 + ,2.9 + ,0.88 + ,207.1 + ,1.33 + ,1.81 + ,2.67 + ,2.63 + ,1.28 + ,207.8 + ,0.88 + ,1.33 + ,1.81 + ,2.67 + ,1.26 + ,208 + ,1.28 + ,0.88 + ,1.33 + ,1.81 + ,1.26 + ,208.5 + ,1.26 + ,1.28 + ,0.88 + ,1.33 + ,1.29 + ,208.6 + ,1.26 + ,1.26 + ,1.28 + ,0.88 + ,1.1 + ,209 + ,1.29 + ,1.26 + ,1.26 + ,1.28 + ,1.37 + ,209.1 + ,1.1 + ,1.29 + ,1.26 + ,1.26 + ,1.21 + ,209.7 + ,1.37 + ,1.1 + ,1.29 + ,1.26 + ,1.74 + ,209.8 + ,1.21 + ,1.37 + ,1.1 + ,1.29 + ,1.76 + ,209.9 + ,1.74 + ,1.21 + ,1.37 + ,1.1 + ,1.48 + ,210 + ,1.76 + ,1.74 + ,1.21 + ,1.37 + ,1.04 + ,210.8 + ,1.48 + ,1.76 + ,1.74 + ,1.21 + ,1.62 + ,211.4 + ,1.04 + ,1.48 + ,1.76 + ,1.74 + ,1.49 + ,211.7 + ,1.62 + ,1.04 + ,1.48 + ,1.76 + ,1.79 + ,212 + ,1.49 + ,1.62 + ,1.04 + ,1.48 + ,1.8 + ,212.2 + ,1.79 + ,1.49 + ,1.62 + ,1.04 + ,1.58 + ,212.4 + ,1.8 + ,1.79 + ,1.49 + ,1.62 + ,1.86 + ,212.9 + ,1.58 + ,1.8 + ,1.79 + ,1.49 + ,1.74 + ,213.4 + ,1.86 + ,1.58 + ,1.8 + ,1.79 + ,1.59 + ,213.7 + ,1.74 + ,1.86 + ,1.58 + ,1.8 + ,1.26 + ,214 + ,1.59 + ,1.74 + ,1.86 + ,1.58 + ,1.13 + ,214.3 + ,1.26 + ,1.59 + ,1.74 + ,1.86 + ,1.92 + ,214.8 + ,1.13 + ,1.26 + ,1.59 + ,1.74 + ,2.61 + ,215 + ,1.92 + ,1.13 + ,1.26 + ,1.59 + ,2.26 + ,215.9 + ,2.61 + ,1.92 + ,1.13 + ,1.26 + ,2.41 + ,216.4 + ,2.26 + ,2.61 + ,1.92 + ,1.13 + ,2.26 + ,216.9 + ,2.41 + ,2.26 + ,2.61 + ,1.92 + ,2.03 + ,217.2 + ,2.26 + ,2.41 + ,2.26 + ,2.61 + ,2.86 + ,217.5 + ,2.03 + ,2.26 + ,2.41 + ,2.26 + ,2.55 + ,217.9 + ,2.86 + ,2.03 + ,2.26 + ,2.41 + ,2.27 + ,218.1 + ,2.55 + ,2.86 + ,2.03 + ,2.26 + ,2.26 + ,218.6 + ,2.27 + ,2.55 + ,2.86 + ,2.03 + ,2.57 + ,218.9 + ,2.26 + ,2.27 + ,2.55 + ,2.86 + ,3.07 + ,219.3 + ,2.57 + ,2.26 + ,2.27 + ,2.55 + ,2.76 + ,220.4 + ,3.07 + ,2.57 + ,2.26 + ,2.27 + ,2.51 + ,220.9 + ,2.76 + ,3.07 + ,2.57 + ,2.26 + ,2.87 + ,221 + ,2.51 + ,2.76 + ,3.07 + ,2.57 + ,3.14 + ,221.8 + ,2.87 + ,2.51 + ,2.76 + ,3.07 + ,3.11 + ,222 + ,3.14 + ,2.87 + ,2.51 + ,2.76 + ,3.16 + ,222.2 + ,3.11 + ,3.14 + ,2.87 + ,2.51 + ,2.47 + ,222.5 + ,3.16 + ,3.11 + ,3.14 + ,2.87 + ,2.57 + ,222.9 + ,2.47 + ,3.16 + ,3.11 + ,3.14 + ,2.89 + ,223.1 + ,2.57 + ,2.47 + ,3.16 + ,3.11) + ,dim=c(6 + ,68) + ,dimnames=list(c('Y' + ,'X' + ,'Y1' + ,'Y2' + ,'Y3' + ,'Y4') + ,1:68)) > y <- array(NA,dim=c(6,68),dimnames=list(c('Y','X','Y1','Y2','Y3','Y4'),1:68)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'Linear Trend' > par2 = 'Include Monthly Dummies' > par1 = '1' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > library(lmtest) Loading required package: zoo Attaching package: 'zoo' The following object(s) are masked from package:base : as.Date.numeric > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x Y X Y1 Y2 Y3 Y4 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 t 1 2.16 196.2 2.04 2.26 1.95 1.79 1 0 0 0 0 0 0 0 0 0 0 1 2 2.75 196.2 2.16 2.04 2.26 1.95 0 1 0 0 0 0 0 0 0 0 0 2 3 2.79 196.2 2.75 2.16 2.04 2.26 0 0 1 0 0 0 0 0 0 0 0 3 4 2.88 197.0 2.79 2.75 2.16 2.04 0 0 0 1 0 0 0 0 0 0 0 4 5 3.36 197.7 2.88 2.79 2.75 2.16 0 0 0 0 1 0 0 0 0 0 0 5 6 2.97 198.0 3.36 2.88 2.79 2.75 0 0 0 0 0 1 0 0 0 0 0 6 7 3.10 198.2 2.97 3.36 2.88 2.79 0 0 0 0 0 0 1 0 0 0 0 7 8 2.49 198.5 3.10 2.97 3.36 2.88 0 0 0 0 0 0 0 1 0 0 0 8 9 2.20 198.6 2.49 3.10 2.97 3.36 0 0 0 0 0 0 0 0 1 0 0 9 10 2.25 199.5 2.20 2.49 3.10 2.97 0 0 0 0 0 0 0 0 0 1 0 10 11 2.09 200.0 2.25 2.20 2.49 3.10 0 0 0 0 0 0 0 0 0 0 1 11 12 2.79 201.3 2.09 2.25 2.20 2.49 0 0 0 0 0 0 0 0 0 0 0 12 13 3.14 202.2 2.79 2.09 2.25 2.20 1 0 0 0 0 0 0 0 0 0 0 13 14 2.93 202.9 3.14 2.79 2.09 2.25 0 1 0 0 0 0 0 0 0 0 0 14 15 2.65 203.5 2.93 3.14 2.79 2.09 0 0 1 0 0 0 0 0 0 0 0 15 16 2.67 203.5 2.65 2.93 3.14 2.79 0 0 0 1 0 0 0 0 0 0 0 16 17 2.26 204.0 2.67 2.65 2.93 3.14 0 0 0 0 1 0 0 0 0 0 0 17 18 2.35 204.1 2.26 2.67 2.65 2.93 0 0 0 0 0 1 0 0 0 0 0 18 19 2.13 204.3 2.35 2.26 2.67 2.65 0 0 0 0 0 0 1 0 0 0 0 19 20 2.18 204.5 2.13 2.35 2.26 2.67 0 0 0 0 0 0 0 1 0 0 0 20 21 2.90 204.8 2.18 2.13 2.35 2.26 0 0 0 0 0 0 0 0 1 0 0 21 22 2.63 205.1 2.90 2.18 2.13 2.35 0 0 0 0 0 0 0 0 0 1 0 22 23 2.67 205.7 2.63 2.90 2.18 2.13 0 0 0 0 0 0 0 0 0 0 1 23 24 1.81 206.5 2.67 2.63 2.90 2.18 0 0 0 0 0 0 0 0 0 0 0 24 25 1.33 206.9 1.81 2.67 2.63 2.90 1 0 0 0 0 0 0 0 0 0 0 25 26 0.88 207.1 1.33 1.81 2.67 2.63 0 1 0 0 0 0 0 0 0 0 0 26 27 1.28 207.8 0.88 1.33 1.81 2.67 0 0 1 0 0 0 0 0 0 0 0 27 28 1.26 208.0 1.28 0.88 1.33 1.81 0 0 0 1 0 0 0 0 0 0 0 28 29 1.26 208.5 1.26 1.28 0.88 1.33 0 0 0 0 1 0 0 0 0 0 0 29 30 1.29 208.6 1.26 1.26 1.28 0.88 0 0 0 0 0 1 0 0 0 0 0 30 31 1.10 209.0 1.29 1.26 1.26 1.28 0 0 0 0 0 0 1 0 0 0 0 31 32 1.37 209.1 1.10 1.29 1.26 1.26 0 0 0 0 0 0 0 1 0 0 0 32 33 1.21 209.7 1.37 1.10 1.29 1.26 0 0 0 0 0 0 0 0 1 0 0 33 34 1.74 209.8 1.21 1.37 1.10 1.29 0 0 0 0 0 0 0 0 0 1 0 34 35 1.76 209.9 1.74 1.21 1.37 1.10 0 0 0 0 0 0 0 0 0 0 1 35 36 1.48 210.0 1.76 1.74 1.21 1.37 0 0 0 0 0 0 0 0 0 0 0 36 37 1.04 210.8 1.48 1.76 1.74 1.21 1 0 0 0 0 0 0 0 0 0 0 37 38 1.62 211.4 1.04 1.48 1.76 1.74 0 1 0 0 0 0 0 0 0 0 0 38 39 1.49 211.7 1.62 1.04 1.48 1.76 0 0 1 0 0 0 0 0 0 0 0 39 40 1.79 212.0 1.49 1.62 1.04 1.48 0 0 0 1 0 0 0 0 0 0 0 40 41 1.80 212.2 1.79 1.49 1.62 1.04 0 0 0 0 1 0 0 0 0 0 0 41 42 1.58 212.4 1.80 1.79 1.49 1.62 0 0 0 0 0 1 0 0 0 0 0 42 43 1.86 212.9 1.58 1.80 1.79 1.49 0 0 0 0 0 0 1 0 0 0 0 43 44 1.74 213.4 1.86 1.58 1.80 1.79 0 0 0 0 0 0 0 1 0 0 0 44 45 1.59 213.7 1.74 1.86 1.58 1.80 0 0 0 0 0 0 0 0 1 0 0 45 46 1.26 214.0 1.59 1.74 1.86 1.58 0 0 0 0 0 0 0 0 0 1 0 46 47 1.13 214.3 1.26 1.59 1.74 1.86 0 0 0 0 0 0 0 0 0 0 1 47 48 1.92 214.8 1.13 1.26 1.59 1.74 0 0 0 0 0 0 0 0 0 0 0 48 49 2.61 215.0 1.92 1.13 1.26 1.59 1 0 0 0 0 0 0 0 0 0 0 49 50 2.26 215.9 2.61 1.92 1.13 1.26 0 1 0 0 0 0 0 0 0 0 0 50 51 2.41 216.4 2.26 2.61 1.92 1.13 0 0 1 0 0 0 0 0 0 0 0 51 52 2.26 216.9 2.41 2.26 2.61 1.92 0 0 0 1 0 0 0 0 0 0 0 52 53 2.03 217.2 2.26 2.41 2.26 2.61 0 0 0 0 1 0 0 0 0 0 0 53 54 2.86 217.5 2.03 2.26 2.41 2.26 0 0 0 0 0 1 0 0 0 0 0 54 55 2.55 217.9 2.86 2.03 2.26 2.41 0 0 0 0 0 0 1 0 0 0 0 55 56 2.27 218.1 2.55 2.86 2.03 2.26 0 0 0 0 0 0 0 1 0 0 0 56 57 2.26 218.6 2.27 2.55 2.86 2.03 0 0 0 0 0 0 0 0 1 0 0 57 58 2.57 218.9 2.26 2.27 2.55 2.86 0 0 0 0 0 0 0 0 0 1 0 58 59 3.07 219.3 2.57 2.26 2.27 2.55 0 0 0 0 0 0 0 0 0 0 1 59 60 2.76 220.4 3.07 2.57 2.26 2.27 0 0 0 0 0 0 0 0 0 0 0 60 61 2.51 220.9 2.76 3.07 2.57 2.26 1 0 0 0 0 0 0 0 0 0 0 61 62 2.87 221.0 2.51 2.76 3.07 2.57 0 1 0 0 0 0 0 0 0 0 0 62 63 3.14 221.8 2.87 2.51 2.76 3.07 0 0 1 0 0 0 0 0 0 0 0 63 64 3.11 222.0 3.14 2.87 2.51 2.76 0 0 0 1 0 0 0 0 0 0 0 64 65 3.16 222.2 3.11 3.14 2.87 2.51 0 0 0 0 1 0 0 0 0 0 0 65 66 2.47 222.5 3.16 3.11 3.14 2.87 0 0 0 0 0 1 0 0 0 0 0 66 67 2.57 222.9 2.47 3.16 3.11 3.14 0 0 0 0 0 0 1 0 0 0 0 67 68 2.89 223.1 2.57 2.47 3.16 3.11 0 0 0 0 0 0 0 1 0 0 0 68 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) X Y1 Y2 Y3 Y4 23.84658 -0.12020 0.84850 -0.04941 -0.03722 0.11176 M1 M2 M3 M4 M5 M6 0.00712 0.09025 0.08904 0.05928 0.01935 -0.05273 M7 M8 M9 M10 M11 t -0.05283 -0.11093 -0.04797 -0.02845 -0.02388 0.04877 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -0.66400 -0.24290 -0.02164 0.20726 0.80359 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 23.84658 18.02241 1.323 0.192 X -0.12021 0.09185 -1.309 0.197 Y1 0.84850 0.14085 6.024 2.01e-07 *** Y2 -0.04941 0.18400 -0.269 0.789 Y3 -0.03722 0.18741 -0.199 0.843 Y4 0.11176 0.14569 0.767 0.447 M1 0.00712 0.24132 0.030 0.977 M2 0.09025 0.24142 0.374 0.710 M3 0.08904 0.24148 0.369 0.714 M4 0.05928 0.24109 0.246 0.807 M5 0.01935 0.24128 0.080 0.936 M6 -0.05273 0.24159 -0.218 0.828 M7 -0.05283 0.24244 -0.218 0.828 M8 -0.11093 0.24409 -0.454 0.651 M9 -0.04797 0.25558 -0.188 0.852 M10 -0.02846 0.25561 -0.111 0.912 M11 -0.02388 0.25479 -0.094 0.926 t 0.04877 0.03673 1.328 0.190 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.3972 on 50 degrees of freedom Multiple R-squared: 0.7238, Adjusted R-squared: 0.6299 F-statistic: 7.707 on 17 and 50 DF, p-value: 7.37e-09 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 0.23930552 0.4786110 0.7606945 [2,] 0.70999594 0.5800081 0.2900041 [3,] 0.74570857 0.5085829 0.2542914 [4,] 0.90536329 0.1892734 0.0946367 [5,] 0.88432929 0.2313414 0.1156707 [6,] 0.82494877 0.3501025 0.1750512 [7,] 0.76748580 0.4650284 0.2325142 [8,] 0.76127915 0.4774417 0.2387209 [9,] 0.74160910 0.5167818 0.2583909 [10,] 0.65189599 0.6962080 0.3481040 [11,] 0.59225274 0.8154945 0.4077473 [12,] 0.53184954 0.9363009 0.4681505 [13,] 0.48827687 0.9765537 0.5117231 [14,] 0.54749106 0.9050179 0.4525089 [15,] 0.56581458 0.8683708 0.4341854 [16,] 0.48587639 0.9717528 0.5141236 [17,] 0.40901895 0.8180379 0.5909811 [18,] 0.52915276 0.9416945 0.4708472 [19,] 0.48186194 0.9637239 0.5181381 [20,] 0.42142388 0.8428478 0.5785761 [21,] 0.33152172 0.6630434 0.6684783 [22,] 0.24242604 0.4848521 0.7575740 [23,] 0.23898408 0.4779682 0.7610159 [24,] 0.17632319 0.3526464 0.8236768 [25,] 0.10487485 0.2097497 0.8951251 [26,] 0.06589685 0.1317937 0.9341031 [27,] 0.16052617 0.3210523 0.8394738 > postscript(file="/var/www/html/rcomp/tmp/1i3gb1291474387.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/2i3gb1291474387.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/3i3gb1291474387.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/4bdgw1291474387.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/5bdgw1291474387.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 68 Frequency = 1 1 2 3 4 5 0.0949615130 0.4340265405 -0.1110535422 0.0803723414 0.5698378434 6 7 8 9 10 -0.2280720591 0.2308169405 -0.4555603602 -0.3894149935 -0.0351666359 11 12 13 14 15 -0.2823940214 0.6968400935 0.5315504227 -0.0001359892 -0.0161608063 16 17 18 19 20 0.1468338769 -0.2896352258 0.1976213118 -0.1115895969 0.1454075385 21 22 23 24 25 0.7856171046 -0.1433038010 0.2065940876 -0.6559599586 -0.5025908937 26 27 28 29 30 -0.6639981937 0.0942183454 -0.2041312214 -0.0792317724 0.0502909035 31 32 33 34 35 -0.2111950826 0.2450905532 -0.1918810331 0.4205323746 -0.0271221693 36 37 38 39 40 -0.3946570197 -0.5182053119 0.3030361336 -0.3649907027 0.1059489988 41 42 43 44 45 -0.0590604405 -0.2950270060 0.2092688251 -0.1229037936 -0.2422186650 46 47 48 49 50 -0.4480886832 -0.3585365027 0.5207503448 0.5066461340 -0.3814582818 51 52 53 54 55 0.1560834224 -0.1599984640 -0.3182243805 0.8035916147 -0.2449596784 56 57 58 59 60 -0.1793347667 0.0378975870 0.2060267455 0.4614586057 -0.1669734599 61 62 63 64 65 -0.1123618642 0.3085297906 0.2419032835 0.0309744683 0.1763139758 66 67 68 -0.5284047649 0.1276585924 0.3673008288 > postscript(file="/var/www/html/rcomp/tmp/6bdgw1291474387.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 68 Frequency = 1 lag(myerror, k = 1) myerror 0 0.0949615130 NA 1 0.4340265405 0.0949615130 2 -0.1110535422 0.4340265405 3 0.0803723414 -0.1110535422 4 0.5698378434 0.0803723414 5 -0.2280720591 0.5698378434 6 0.2308169405 -0.2280720591 7 -0.4555603602 0.2308169405 8 -0.3894149935 -0.4555603602 9 -0.0351666359 -0.3894149935 10 -0.2823940214 -0.0351666359 11 0.6968400935 -0.2823940214 12 0.5315504227 0.6968400935 13 -0.0001359892 0.5315504227 14 -0.0161608063 -0.0001359892 15 0.1468338769 -0.0161608063 16 -0.2896352258 0.1468338769 17 0.1976213118 -0.2896352258 18 -0.1115895969 0.1976213118 19 0.1454075385 -0.1115895969 20 0.7856171046 0.1454075385 21 -0.1433038010 0.7856171046 22 0.2065940876 -0.1433038010 23 -0.6559599586 0.2065940876 24 -0.5025908937 -0.6559599586 25 -0.6639981937 -0.5025908937 26 0.0942183454 -0.6639981937 27 -0.2041312214 0.0942183454 28 -0.0792317724 -0.2041312214 29 0.0502909035 -0.0792317724 30 -0.2111950826 0.0502909035 31 0.2450905532 -0.2111950826 32 -0.1918810331 0.2450905532 33 0.4205323746 -0.1918810331 34 -0.0271221693 0.4205323746 35 -0.3946570197 -0.0271221693 36 -0.5182053119 -0.3946570197 37 0.3030361336 -0.5182053119 38 -0.3649907027 0.3030361336 39 0.1059489988 -0.3649907027 40 -0.0590604405 0.1059489988 41 -0.2950270060 -0.0590604405 42 0.2092688251 -0.2950270060 43 -0.1229037936 0.2092688251 44 -0.2422186650 -0.1229037936 45 -0.4480886832 -0.2422186650 46 -0.3585365027 -0.4480886832 47 0.5207503448 -0.3585365027 48 0.5066461340 0.5207503448 49 -0.3814582818 0.5066461340 50 0.1560834224 -0.3814582818 51 -0.1599984640 0.1560834224 52 -0.3182243805 -0.1599984640 53 0.8035916147 -0.3182243805 54 -0.2449596784 0.8035916147 55 -0.1793347667 -0.2449596784 56 0.0378975870 -0.1793347667 57 0.2060267455 0.0378975870 58 0.4614586057 0.2060267455 59 -0.1669734599 0.4614586057 60 -0.1123618642 -0.1669734599 61 0.3085297906 -0.1123618642 62 0.2419032835 0.3085297906 63 0.0309744683 0.2419032835 64 0.1763139758 0.0309744683 65 -0.5284047649 0.1763139758 66 0.1276585924 -0.5284047649 67 0.3673008288 0.1276585924 68 NA 0.3673008288 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] 0.4340265405 0.0949615130 [2,] -0.1110535422 0.4340265405 [3,] 0.0803723414 -0.1110535422 [4,] 0.5698378434 0.0803723414 [5,] -0.2280720591 0.5698378434 [6,] 0.2308169405 -0.2280720591 [7,] -0.4555603602 0.2308169405 [8,] -0.3894149935 -0.4555603602 [9,] -0.0351666359 -0.3894149935 [10,] -0.2823940214 -0.0351666359 [11,] 0.6968400935 -0.2823940214 [12,] 0.5315504227 0.6968400935 [13,] -0.0001359892 0.5315504227 [14,] -0.0161608063 -0.0001359892 [15,] 0.1468338769 -0.0161608063 [16,] -0.2896352258 0.1468338769 [17,] 0.1976213118 -0.2896352258 [18,] -0.1115895969 0.1976213118 [19,] 0.1454075385 -0.1115895969 [20,] 0.7856171046 0.1454075385 [21,] -0.1433038010 0.7856171046 [22,] 0.2065940876 -0.1433038010 [23,] -0.6559599586 0.2065940876 [24,] -0.5025908937 -0.6559599586 [25,] -0.6639981937 -0.5025908937 [26,] 0.0942183454 -0.6639981937 [27,] -0.2041312214 0.0942183454 [28,] -0.0792317724 -0.2041312214 [29,] 0.0502909035 -0.0792317724 [30,] -0.2111950826 0.0502909035 [31,] 0.2450905532 -0.2111950826 [32,] -0.1918810331 0.2450905532 [33,] 0.4205323746 -0.1918810331 [34,] -0.0271221693 0.4205323746 [35,] -0.3946570197 -0.0271221693 [36,] -0.5182053119 -0.3946570197 [37,] 0.3030361336 -0.5182053119 [38,] -0.3649907027 0.3030361336 [39,] 0.1059489988 -0.3649907027 [40,] -0.0590604405 0.1059489988 [41,] -0.2950270060 -0.0590604405 [42,] 0.2092688251 -0.2950270060 [43,] -0.1229037936 0.2092688251 [44,] -0.2422186650 -0.1229037936 [45,] -0.4480886832 -0.2422186650 [46,] -0.3585365027 -0.4480886832 [47,] 0.5207503448 -0.3585365027 [48,] 0.5066461340 0.5207503448 [49,] -0.3814582818 0.5066461340 [50,] 0.1560834224 -0.3814582818 [51,] -0.1599984640 0.1560834224 [52,] -0.3182243805 -0.1599984640 [53,] 0.8035916147 -0.3182243805 [54,] -0.2449596784 0.8035916147 [55,] -0.1793347667 -0.2449596784 [56,] 0.0378975870 -0.1793347667 [57,] 0.2060267455 0.0378975870 [58,] 0.4614586057 0.2060267455 [59,] -0.1669734599 0.4614586057 [60,] -0.1123618642 -0.1669734599 [61,] 0.3085297906 -0.1123618642 [62,] 0.2419032835 0.3085297906 [63,] 0.0309744683 0.2419032835 [64,] 0.1763139758 0.0309744683 [65,] -0.5284047649 0.1763139758 [66,] 0.1276585924 -0.5284047649 [67,] 0.3673008288 0.1276585924 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 0.4340265405 0.0949615130 2 -0.1110535422 0.4340265405 3 0.0803723414 -0.1110535422 4 0.5698378434 0.0803723414 5 -0.2280720591 0.5698378434 6 0.2308169405 -0.2280720591 7 -0.4555603602 0.2308169405 8 -0.3894149935 -0.4555603602 9 -0.0351666359 -0.3894149935 10 -0.2823940214 -0.0351666359 11 0.6968400935 -0.2823940214 12 0.5315504227 0.6968400935 13 -0.0001359892 0.5315504227 14 -0.0161608063 -0.0001359892 15 0.1468338769 -0.0161608063 16 -0.2896352258 0.1468338769 17 0.1976213118 -0.2896352258 18 -0.1115895969 0.1976213118 19 0.1454075385 -0.1115895969 20 0.7856171046 0.1454075385 21 -0.1433038010 0.7856171046 22 0.2065940876 -0.1433038010 23 -0.6559599586 0.2065940876 24 -0.5025908937 -0.6559599586 25 -0.6639981937 -0.5025908937 26 0.0942183454 -0.6639981937 27 -0.2041312214 0.0942183454 28 -0.0792317724 -0.2041312214 29 0.0502909035 -0.0792317724 30 -0.2111950826 0.0502909035 31 0.2450905532 -0.2111950826 32 -0.1918810331 0.2450905532 33 0.4205323746 -0.1918810331 34 -0.0271221693 0.4205323746 35 -0.3946570197 -0.0271221693 36 -0.5182053119 -0.3946570197 37 0.3030361336 -0.5182053119 38 -0.3649907027 0.3030361336 39 0.1059489988 -0.3649907027 40 -0.0590604405 0.1059489988 41 -0.2950270060 -0.0590604405 42 0.2092688251 -0.2950270060 43 -0.1229037936 0.2092688251 44 -0.2422186650 -0.1229037936 45 -0.4480886832 -0.2422186650 46 -0.3585365027 -0.4480886832 47 0.5207503448 -0.3585365027 48 0.5066461340 0.5207503448 49 -0.3814582818 0.5066461340 50 0.1560834224 -0.3814582818 51 -0.1599984640 0.1560834224 52 -0.3182243805 -0.1599984640 53 0.8035916147 -0.3182243805 54 -0.2449596784 0.8035916147 55 -0.1793347667 -0.2449596784 56 0.0378975870 -0.1793347667 57 0.2060267455 0.0378975870 58 0.4614586057 0.2060267455 59 -0.1669734599 0.4614586057 60 -0.1123618642 -0.1669734599 61 0.3085297906 -0.1123618642 62 0.2419032835 0.3085297906 63 0.0309744683 0.2419032835 64 0.1763139758 0.0309744683 65 -0.5284047649 0.1763139758 66 0.1276585924 -0.5284047649 67 0.3673008288 0.1276585924 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/744fh1291474387.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/8fdwk1291474387.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/9fdwk1291474387.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/www/html/rcomp/tmp/10fdwk1291474387.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/11iwv71291474387.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/123wtd1291474387.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/13afqp1291474387.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/14367s1291474387.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/15o7og1291474387.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/162h4p1291474387.tab") + } > > try(system("convert tmp/1i3gb1291474387.ps tmp/1i3gb1291474387.png",intern=TRUE)) character(0) > try(system("convert tmp/2i3gb1291474387.ps tmp/2i3gb1291474387.png",intern=TRUE)) character(0) > try(system("convert tmp/3i3gb1291474387.ps tmp/3i3gb1291474387.png",intern=TRUE)) character(0) > try(system("convert tmp/4bdgw1291474387.ps tmp/4bdgw1291474387.png",intern=TRUE)) character(0) > try(system("convert tmp/5bdgw1291474387.ps tmp/5bdgw1291474387.png",intern=TRUE)) character(0) > try(system("convert tmp/6bdgw1291474387.ps tmp/6bdgw1291474387.png",intern=TRUE)) character(0) > try(system("convert tmp/744fh1291474387.ps tmp/744fh1291474387.png",intern=TRUE)) character(0) > try(system("convert tmp/8fdwk1291474387.ps tmp/8fdwk1291474387.png",intern=TRUE)) character(0) > try(system("convert tmp/9fdwk1291474387.ps tmp/9fdwk1291474387.png",intern=TRUE)) character(0) > try(system("convert tmp/10fdwk1291474387.ps tmp/10fdwk1291474387.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 2.539 1.693 9.239