R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(3030.29 + ,25.64 + ,2803.47 + ,27.97 + ,2767.63 + ,27.62 + ,2882.6 + ,23.31 + ,2863.36 + ,29.07 + ,2897.06 + ,29.58 + ,3012.61 + ,28.63 + ,3142.95 + ,29.92 + ,3032.93 + ,32.68 + ,3045.78 + ,31.54 + ,3110.52 + ,32.43 + ,3013.24 + ,26.54 + ,2987.1 + ,25.85 + ,2995.55 + ,27.6 + ,2833.18 + ,25.71 + ,2848.96 + ,25.38 + ,2794.83 + ,28.57 + ,2845.26 + ,27.64 + ,2915.03 + ,25.36 + ,2892.63 + ,25.9 + ,2604.42 + ,26.29 + ,2641.65 + ,21.74 + ,2659.81 + ,19.2 + ,2638.53 + ,19.32 + ,2720.25 + ,19.82 + ,2745.88 + ,20.36 + ,2735.7 + ,24.31 + ,2811.7 + ,25.97 + ,2799.43 + ,25.61 + ,2555.28 + ,24.67 + ,2304.98 + ,25.59 + ,2214.95 + ,26.09 + ,2065.81 + ,28.37 + ,1940.49 + ,27.34 + ,2042 + ,24.46 + ,1995.37 + ,27.46 + ,1946.81 + ,30.23 + ,1765.9 + ,32.33 + ,1635.25 + ,29.87 + ,1833.42 + ,24.87 + ,1910.43 + ,25.48 + ,1959.67 + ,27.28 + ,1969.6 + ,28.24 + ,2061.41 + ,29.58 + ,2093.48 + ,26.95 + ,2120.88 + ,29.08 + ,2174.56 + ,28.76 + ,2196.72 + ,29.59 + ,2350.44 + ,30.7 + ,2440.25 + ,30.52 + ,2408.64 + ,32.67 + ,2472.81 + ,33.19 + ,2407.6 + ,37.13 + ,2454.62 + ,35.54 + ,2448.05 + ,37.75 + ,2497.84 + ,41.84 + ,2645.64 + ,42.94 + ,2756.76 + ,49.14 + ,2849.27 + ,44.61 + ,2921.44 + ,40.22 + ,2981.85 + ,44.23 + ,3080.58 + ,45.85 + ,3106.22 + ,53.38 + ,3119.31 + ,53.26 + ,3061.26 + ,51.8 + ,3097.31 + ,55.3 + ,3161.69 + ,57.81 + ,3257.16 + ,63.96 + ,3277.01 + ,63.77 + ,3295.32 + ,59.15 + ,3363.99 + ,56.12 + ,3494.17 + ,57.42 + ,3667.03 + ,63.52 + ,3813.06 + ,61.71 + ,3917.96 + ,63.01 + ,3895.51 + ,68.18 + ,3801.06 + ,72.03 + ,3570.12 + ,69.75 + ,3701.61 + ,74.41 + ,3862.27 + ,74.33 + ,3970.1 + ,64.24 + ,4138.52 + ,60.03 + ,4199.75 + ,59.44 + ,4290.89 + ,62.5 + ,4443.91 + ,55.04 + ,4502.64 + ,58.34 + ,4356.98 + ,61.92 + ,4591.27 + ,67.65 + ,4696.96 + ,67.68 + ,4621.4 + ,70.3 + ,4562.84 + ,75.26 + ,4202.52 + ,71.44 + ,4296.49 + ,76.36 + ,4435.23 + ,81.71 + ,4105.18 + ,92.6 + ,4116.68 + ,90.6 + ,3844.49 + ,92.23 + ,3720.98 + ,94.09 + ,3674.4 + ,102.79 + ,3857.62 + ,109.65 + ,3801.06 + ,124.05 + ,3504.37 + ,132.69 + ,3032.6 + ,135.81 + ,3047.03 + ,116.07 + ,2962.34 + ,101.42 + ,2197.82 + ,75.73 + ,2014.45 + ,55.48 + ,1862.83 + ,43.8 + ,1905.41 + ,45.29) + ,dim=c(2 + ,109) + ,dimnames=list(c('Aandelenkoers' + ,'Olieprijs') + ,1:109)) > y <- array(NA,dim=c(2,109),dimnames=list(c('Aandelenkoers','Olieprijs'),1:109)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'No Linear Trend' > par2 = 'Do not include Seasonal Dummies' > par1 = '1' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > library(lmtest) Loading required package: zoo Attaching package: 'zoo' The following object(s) are masked from package:base : as.Date.numeric > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x Aandelenkoers Olieprijs 1 3030.29 25.64 2 2803.47 27.97 3 2767.63 27.62 4 2882.60 23.31 5 2863.36 29.07 6 2897.06 29.58 7 3012.61 28.63 8 3142.95 29.92 9 3032.93 32.68 10 3045.78 31.54 11 3110.52 32.43 12 3013.24 26.54 13 2987.10 25.85 14 2995.55 27.60 15 2833.18 25.71 16 2848.96 25.38 17 2794.83 28.57 18 2845.26 27.64 19 2915.03 25.36 20 2892.63 25.90 21 2604.42 26.29 22 2641.65 21.74 23 2659.81 19.20 24 2638.53 19.32 25 2720.25 19.82 26 2745.88 20.36 27 2735.70 24.31 28 2811.70 25.97 29 2799.43 25.61 30 2555.28 24.67 31 2304.98 25.59 32 2214.95 26.09 33 2065.81 28.37 34 1940.49 27.34 35 2042.00 24.46 36 1995.37 27.46 37 1946.81 30.23 38 1765.90 32.33 39 1635.25 29.87 40 1833.42 24.87 41 1910.43 25.48 42 1959.67 27.28 43 1969.60 28.24 44 2061.41 29.58 45 2093.48 26.95 46 2120.88 29.08 47 2174.56 28.76 48 2196.72 29.59 49 2350.44 30.70 50 2440.25 30.52 51 2408.64 32.67 52 2472.81 33.19 53 2407.60 37.13 54 2454.62 35.54 55 2448.05 37.75 56 2497.84 41.84 57 2645.64 42.94 58 2756.76 49.14 59 2849.27 44.61 60 2921.44 40.22 61 2981.85 44.23 62 3080.58 45.85 63 3106.22 53.38 64 3119.31 53.26 65 3061.26 51.80 66 3097.31 55.30 67 3161.69 57.81 68 3257.16 63.96 69 3277.01 63.77 70 3295.32 59.15 71 3363.99 56.12 72 3494.17 57.42 73 3667.03 63.52 74 3813.06 61.71 75 3917.96 63.01 76 3895.51 68.18 77 3801.06 72.03 78 3570.12 69.75 79 3701.61 74.41 80 3862.27 74.33 81 3970.10 64.24 82 4138.52 60.03 83 4199.75 59.44 84 4290.89 62.50 85 4443.91 55.04 86 4502.64 58.34 87 4356.98 61.92 88 4591.27 67.65 89 4696.96 67.68 90 4621.40 70.30 91 4562.84 75.26 92 4202.52 71.44 93 4296.49 76.36 94 4435.23 81.71 95 4105.18 92.60 96 4116.68 90.60 97 3844.49 92.23 98 3720.98 94.09 99 3674.40 102.79 100 3857.62 109.65 101 3801.06 124.05 102 3504.37 132.69 103 3032.60 135.81 104 3047.03 116.07 105 2962.34 101.42 106 2197.82 75.73 107 2014.45 55.48 108 1862.83 43.80 109 1905.41 45.29 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) Olieprijs 2162.31 17.81 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -1548.32 -409.59 92.17 340.43 1329.35 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2162.315 122.062 17.715 < 2e-16 *** Olieprijs 17.809 2.203 8.084 1.03e-12 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 613 on 107 degrees of freedom Multiple R-squared: 0.3792, Adjusted R-squared: 0.3734 F-statistic: 65.36 on 1 and 107 DF, p-value: 1.031e-12 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 6.348664e-03 1.269733e-02 0.993651336 [2,] 1.099444e-03 2.198888e-03 0.998900556 [3,] 4.074059e-04 8.148118e-04 0.999592594 [4,] 3.966874e-04 7.933747e-04 0.999603313 [5,] 7.899895e-05 1.579979e-04 0.999921001 [6,] 1.560003e-05 3.120007e-05 0.999984400 [7,] 3.479349e-06 6.958697e-06 0.999996521 [8,] 8.435221e-07 1.687044e-06 0.999999156 [9,] 1.725634e-07 3.451268e-07 0.999999827 [10,] 3.037038e-08 6.074076e-08 0.999999970 [11,] 6.614329e-09 1.322866e-08 0.999999993 [12,] 1.172426e-09 2.344853e-09 0.999999999 [13,] 6.046933e-10 1.209387e-09 0.999999999 [14,] 1.338241e-10 2.676482e-10 1.000000000 [15,] 2.207907e-11 4.415813e-11 1.000000000 [16,] 3.404375e-12 6.808749e-12 1.000000000 [17,] 1.715277e-11 3.430555e-11 1.000000000 [18,] 4.904227e-12 9.808454e-12 1.000000000 [19,] 8.542862e-13 1.708572e-12 1.000000000 [20,] 1.488327e-13 2.976654e-13 1.000000000 [21,] 2.631685e-14 5.263370e-14 1.000000000 [22,] 4.650569e-15 9.301137e-15 1.000000000 [23,] 9.730939e-16 1.946188e-15 1.000000000 [24,] 1.716522e-16 3.433045e-16 1.000000000 [25,] 2.994158e-17 5.988317e-17 1.000000000 [26,] 7.349690e-17 1.469938e-16 1.000000000 [27,] 2.893286e-14 5.786571e-14 1.000000000 [28,] 3.730494e-12 7.460988e-12 1.000000000 [29,] 9.090589e-10 1.818118e-09 0.999999999 [30,] 5.023447e-08 1.004689e-07 0.999999950 [31,] 1.940177e-07 3.880354e-07 0.999999806 [32,] 1.022205e-06 2.044410e-06 0.999998978 [33,] 5.648563e-06 1.129713e-05 0.999994351 [34,] 4.300295e-05 8.600589e-05 0.999956997 [35,] 2.650157e-04 5.300315e-04 0.999734984 [36,] 5.516496e-04 1.103299e-03 0.999448350 [37,] 8.220862e-04 1.644172e-03 0.999177914 [38,] 1.042626e-03 2.085252e-03 0.998957374 [39,] 1.262020e-03 2.524039e-03 0.998737980 [40,] 1.260536e-03 2.521072e-03 0.998739464 [41,] 1.199869e-03 2.399739e-03 0.998800131 [42,] 1.094303e-03 2.188606e-03 0.998905697 [43,] 9.331784e-04 1.866357e-03 0.999066822 [44,] 7.812381e-04 1.562476e-03 0.999218762 [45,] 5.617073e-04 1.123415e-03 0.999438293 [46,] 3.826451e-04 7.652902e-04 0.999617355 [47,] 2.714343e-04 5.428686e-04 0.999728566 [48,] 1.894551e-04 3.789102e-04 0.999810545 [49,] 1.448963e-04 2.897926e-04 0.999855104 [50,] 1.096453e-04 2.192905e-04 0.999890355 [51,] 8.840080e-05 1.768016e-04 0.999911599 [52,] 7.562424e-05 1.512485e-04 0.999924376 [53,] 6.427981e-05 1.285596e-04 0.999935720 [54,] 5.712745e-05 1.142549e-04 0.999942873 [55,] 4.756535e-05 9.513070e-05 0.999952435 [56,] 3.917292e-05 7.834584e-05 0.999960827 [57,] 3.250838e-05 6.501675e-05 0.999967492 [58,] 2.714167e-05 5.428334e-05 0.999972858 [59,] 2.052873e-05 4.105745e-05 0.999979471 [60,] 1.488425e-05 2.976850e-05 0.999985116 [61,] 1.073171e-05 2.146343e-05 0.999989268 [62,] 7.521768e-06 1.504354e-05 0.999992478 [63,] 5.095395e-06 1.019079e-05 0.999994905 [64,] 3.203684e-06 6.407368e-06 0.999996796 [65,] 1.986163e-06 3.972326e-06 0.999998014 [66,] 1.272968e-06 2.545936e-06 0.999998727 [67,] 8.540127e-07 1.708025e-06 0.999999146 [68,] 5.843541e-07 1.168708e-06 0.999999416 [69,] 3.820734e-07 7.641469e-07 0.999999618 [70,] 3.053953e-07 6.107906e-07 0.999999695 [71,] 2.568889e-07 5.137777e-07 0.999999743 [72,] 1.571673e-07 3.143346e-07 0.999999843 [73,] 7.625254e-08 1.525051e-07 0.999999924 [74,] 3.569242e-08 7.138485e-08 0.999999964 [75,] 1.580480e-08 3.160960e-08 0.999999984 [76,] 7.183290e-09 1.436658e-08 0.999999993 [77,] 4.959021e-09 9.918042e-09 0.999999995 [78,] 6.442657e-09 1.288531e-08 0.999999994 [79,] 9.697975e-09 1.939595e-08 0.999999990 [80,] 1.491888e-08 2.983775e-08 0.999999985 [81,] 7.131543e-08 1.426309e-07 0.999999929 [82,] 2.980838e-07 5.961677e-07 0.999999702 [83,] 5.527211e-07 1.105442e-06 0.999999447 [84,] 1.884028e-06 3.768056e-06 0.999998116 [85,] 1.224854e-05 2.449708e-05 0.999987751 [86,] 6.613699e-05 1.322740e-04 0.999933863 [87,] 3.101204e-04 6.202409e-04 0.999689880 [88,] 8.152572e-04 1.630514e-03 0.999184743 [89,] 3.379317e-03 6.758634e-03 0.996620683 [90,] 2.632720e-02 5.265440e-02 0.973672802 [91,] 6.521545e-02 1.304309e-01 0.934784548 [92,] 2.045285e-01 4.090571e-01 0.795471456 [93,] 3.849291e-01 7.698581e-01 0.615070928 [94,] 5.906364e-01 8.187273e-01 0.409363640 [95,] 7.341195e-01 5.317609e-01 0.265880464 [96,] 9.361892e-01 1.276217e-01 0.063810838 [97,] 9.914682e-01 1.706369e-02 0.008531843 [98,] 9.929581e-01 1.408387e-02 0.007041937 [99,] 9.959771e-01 8.045794e-03 0.004022897 [100,] 9.823810e-01 3.523804e-02 0.017619021 > postscript(file="/var/www/html/rcomp/tmp/1y3r61291909817.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/2y3r61291909817.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/39uqr1291909817.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/49uqr1291909817.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/59uqr1291909817.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 109 Frequency = 1 1 2 3 4 5 6 411.359604 143.045257 113.438314 305.163950 183.345652 207.963199 7 8 9 10 11 12 340.431494 447.798230 288.626129 321.778084 370.668312 378.281745 13 14 15 16 17 18 364.429770 341.714488 213.002992 234.659874 123.720018 190.712139 19 20 21 22 23 24 301.086049 269.069333 -26.086072 92.173659 155.567839 132.150791 25 26 27 28 29 30 204.966425 220.979710 140.455217 186.892722 181.033865 -46.375926 31 32 33 34 35 36 -313.059960 -411.994326 -601.738235 -708.715241 -555.916092 -655.972289 37 38 39 40 41 42 -753.862477 -972.170815 -1059.011334 -771.797673 -705.650999 -688.466717 43 44 45 46 47 48 -695.633100 -627.686801 -548.779836 -559.312435 -499.933641 -492.554889 49 50 51 52 53 54 -358.602581 -265.587010 -335.485784 -280.576325 -415.952729 -340.616845 55 56 57 58 59 60 -386.544143 -409.591858 -281.381464 -280.675603 -107.492046 42.858288 61 62 63 64 65 66 31.855272 101.735126 -6.724628 8.502420 -23.546831 -49.827394 67 68 69 70 71 72 -30.147311 -44.201014 -20.967355 79.618987 202.249446 309.278094 73 74 75 76 77 78 373.504828 551.768633 633.517281 518.996136 355.982517 165.646426 79 80 81 82 83 84 214.147734 376.232433 663.752541 907.147303 978.884455 1015.529735 85 86 87 88 89 90 1301.402877 1301.364061 1091.948799 1224.194764 1329.350502 1207.131623 91 92 93 94 95 96 1060.240312 767.949669 774.300706 817.763989 293.776895 340.894360 97 98 99 100 101 102 39.676126 -116.958116 -318.474086 -257.421989 -570.427732 -1020.985179 103 104 105 106 107 108 -1548.318423 -1182.344050 -1006.136123 -1313.149792 -1135.892965 -1079.506973 109 -1063.461984 > postscript(file="/var/www/html/rcomp/tmp/61m8u1291909817.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 109 Frequency = 1 lag(myerror, k = 1) myerror 0 411.359604 NA 1 143.045257 411.359604 2 113.438314 143.045257 3 305.163950 113.438314 4 183.345652 305.163950 5 207.963199 183.345652 6 340.431494 207.963199 7 447.798230 340.431494 8 288.626129 447.798230 9 321.778084 288.626129 10 370.668312 321.778084 11 378.281745 370.668312 12 364.429770 378.281745 13 341.714488 364.429770 14 213.002992 341.714488 15 234.659874 213.002992 16 123.720018 234.659874 17 190.712139 123.720018 18 301.086049 190.712139 19 269.069333 301.086049 20 -26.086072 269.069333 21 92.173659 -26.086072 22 155.567839 92.173659 23 132.150791 155.567839 24 204.966425 132.150791 25 220.979710 204.966425 26 140.455217 220.979710 27 186.892722 140.455217 28 181.033865 186.892722 29 -46.375926 181.033865 30 -313.059960 -46.375926 31 -411.994326 -313.059960 32 -601.738235 -411.994326 33 -708.715241 -601.738235 34 -555.916092 -708.715241 35 -655.972289 -555.916092 36 -753.862477 -655.972289 37 -972.170815 -753.862477 38 -1059.011334 -972.170815 39 -771.797673 -1059.011334 40 -705.650999 -771.797673 41 -688.466717 -705.650999 42 -695.633100 -688.466717 43 -627.686801 -695.633100 44 -548.779836 -627.686801 45 -559.312435 -548.779836 46 -499.933641 -559.312435 47 -492.554889 -499.933641 48 -358.602581 -492.554889 49 -265.587010 -358.602581 50 -335.485784 -265.587010 51 -280.576325 -335.485784 52 -415.952729 -280.576325 53 -340.616845 -415.952729 54 -386.544143 -340.616845 55 -409.591858 -386.544143 56 -281.381464 -409.591858 57 -280.675603 -281.381464 58 -107.492046 -280.675603 59 42.858288 -107.492046 60 31.855272 42.858288 61 101.735126 31.855272 62 -6.724628 101.735126 63 8.502420 -6.724628 64 -23.546831 8.502420 65 -49.827394 -23.546831 66 -30.147311 -49.827394 67 -44.201014 -30.147311 68 -20.967355 -44.201014 69 79.618987 -20.967355 70 202.249446 79.618987 71 309.278094 202.249446 72 373.504828 309.278094 73 551.768633 373.504828 74 633.517281 551.768633 75 518.996136 633.517281 76 355.982517 518.996136 77 165.646426 355.982517 78 214.147734 165.646426 79 376.232433 214.147734 80 663.752541 376.232433 81 907.147303 663.752541 82 978.884455 907.147303 83 1015.529735 978.884455 84 1301.402877 1015.529735 85 1301.364061 1301.402877 86 1091.948799 1301.364061 87 1224.194764 1091.948799 88 1329.350502 1224.194764 89 1207.131623 1329.350502 90 1060.240312 1207.131623 91 767.949669 1060.240312 92 774.300706 767.949669 93 817.763989 774.300706 94 293.776895 817.763989 95 340.894360 293.776895 96 39.676126 340.894360 97 -116.958116 39.676126 98 -318.474086 -116.958116 99 -257.421989 -318.474086 100 -570.427732 -257.421989 101 -1020.985179 -570.427732 102 -1548.318423 -1020.985179 103 -1182.344050 -1548.318423 104 -1006.136123 -1182.344050 105 -1313.149792 -1006.136123 106 -1135.892965 -1313.149792 107 -1079.506973 -1135.892965 108 -1063.461984 -1079.506973 109 NA -1063.461984 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] 143.045257 411.359604 [2,] 113.438314 143.045257 [3,] 305.163950 113.438314 [4,] 183.345652 305.163950 [5,] 207.963199 183.345652 [6,] 340.431494 207.963199 [7,] 447.798230 340.431494 [8,] 288.626129 447.798230 [9,] 321.778084 288.626129 [10,] 370.668312 321.778084 [11,] 378.281745 370.668312 [12,] 364.429770 378.281745 [13,] 341.714488 364.429770 [14,] 213.002992 341.714488 [15,] 234.659874 213.002992 [16,] 123.720018 234.659874 [17,] 190.712139 123.720018 [18,] 301.086049 190.712139 [19,] 269.069333 301.086049 [20,] -26.086072 269.069333 [21,] 92.173659 -26.086072 [22,] 155.567839 92.173659 [23,] 132.150791 155.567839 [24,] 204.966425 132.150791 [25,] 220.979710 204.966425 [26,] 140.455217 220.979710 [27,] 186.892722 140.455217 [28,] 181.033865 186.892722 [29,] -46.375926 181.033865 [30,] -313.059960 -46.375926 [31,] -411.994326 -313.059960 [32,] -601.738235 -411.994326 [33,] -708.715241 -601.738235 [34,] -555.916092 -708.715241 [35,] -655.972289 -555.916092 [36,] -753.862477 -655.972289 [37,] -972.170815 -753.862477 [38,] -1059.011334 -972.170815 [39,] -771.797673 -1059.011334 [40,] -705.650999 -771.797673 [41,] -688.466717 -705.650999 [42,] -695.633100 -688.466717 [43,] -627.686801 -695.633100 [44,] -548.779836 -627.686801 [45,] -559.312435 -548.779836 [46,] -499.933641 -559.312435 [47,] -492.554889 -499.933641 [48,] -358.602581 -492.554889 [49,] -265.587010 -358.602581 [50,] -335.485784 -265.587010 [51,] -280.576325 -335.485784 [52,] -415.952729 -280.576325 [53,] -340.616845 -415.952729 [54,] -386.544143 -340.616845 [55,] -409.591858 -386.544143 [56,] -281.381464 -409.591858 [57,] -280.675603 -281.381464 [58,] -107.492046 -280.675603 [59,] 42.858288 -107.492046 [60,] 31.855272 42.858288 [61,] 101.735126 31.855272 [62,] -6.724628 101.735126 [63,] 8.502420 -6.724628 [64,] -23.546831 8.502420 [65,] -49.827394 -23.546831 [66,] -30.147311 -49.827394 [67,] -44.201014 -30.147311 [68,] -20.967355 -44.201014 [69,] 79.618987 -20.967355 [70,] 202.249446 79.618987 [71,] 309.278094 202.249446 [72,] 373.504828 309.278094 [73,] 551.768633 373.504828 [74,] 633.517281 551.768633 [75,] 518.996136 633.517281 [76,] 355.982517 518.996136 [77,] 165.646426 355.982517 [78,] 214.147734 165.646426 [79,] 376.232433 214.147734 [80,] 663.752541 376.232433 [81,] 907.147303 663.752541 [82,] 978.884455 907.147303 [83,] 1015.529735 978.884455 [84,] 1301.402877 1015.529735 [85,] 1301.364061 1301.402877 [86,] 1091.948799 1301.364061 [87,] 1224.194764 1091.948799 [88,] 1329.350502 1224.194764 [89,] 1207.131623 1329.350502 [90,] 1060.240312 1207.131623 [91,] 767.949669 1060.240312 [92,] 774.300706 767.949669 [93,] 817.763989 774.300706 [94,] 293.776895 817.763989 [95,] 340.894360 293.776895 [96,] 39.676126 340.894360 [97,] -116.958116 39.676126 [98,] -318.474086 -116.958116 [99,] -257.421989 -318.474086 [100,] -570.427732 -257.421989 [101,] -1020.985179 -570.427732 [102,] -1548.318423 -1020.985179 [103,] -1182.344050 -1548.318423 [104,] -1006.136123 -1182.344050 [105,] -1313.149792 -1006.136123 [106,] -1135.892965 -1313.149792 [107,] -1079.506973 -1135.892965 [108,] -1063.461984 -1079.506973 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 143.045257 411.359604 2 113.438314 143.045257 3 305.163950 113.438314 4 183.345652 305.163950 5 207.963199 183.345652 6 340.431494 207.963199 7 447.798230 340.431494 8 288.626129 447.798230 9 321.778084 288.626129 10 370.668312 321.778084 11 378.281745 370.668312 12 364.429770 378.281745 13 341.714488 364.429770 14 213.002992 341.714488 15 234.659874 213.002992 16 123.720018 234.659874 17 190.712139 123.720018 18 301.086049 190.712139 19 269.069333 301.086049 20 -26.086072 269.069333 21 92.173659 -26.086072 22 155.567839 92.173659 23 132.150791 155.567839 24 204.966425 132.150791 25 220.979710 204.966425 26 140.455217 220.979710 27 186.892722 140.455217 28 181.033865 186.892722 29 -46.375926 181.033865 30 -313.059960 -46.375926 31 -411.994326 -313.059960 32 -601.738235 -411.994326 33 -708.715241 -601.738235 34 -555.916092 -708.715241 35 -655.972289 -555.916092 36 -753.862477 -655.972289 37 -972.170815 -753.862477 38 -1059.011334 -972.170815 39 -771.797673 -1059.011334 40 -705.650999 -771.797673 41 -688.466717 -705.650999 42 -695.633100 -688.466717 43 -627.686801 -695.633100 44 -548.779836 -627.686801 45 -559.312435 -548.779836 46 -499.933641 -559.312435 47 -492.554889 -499.933641 48 -358.602581 -492.554889 49 -265.587010 -358.602581 50 -335.485784 -265.587010 51 -280.576325 -335.485784 52 -415.952729 -280.576325 53 -340.616845 -415.952729 54 -386.544143 -340.616845 55 -409.591858 -386.544143 56 -281.381464 -409.591858 57 -280.675603 -281.381464 58 -107.492046 -280.675603 59 42.858288 -107.492046 60 31.855272 42.858288 61 101.735126 31.855272 62 -6.724628 101.735126 63 8.502420 -6.724628 64 -23.546831 8.502420 65 -49.827394 -23.546831 66 -30.147311 -49.827394 67 -44.201014 -30.147311 68 -20.967355 -44.201014 69 79.618987 -20.967355 70 202.249446 79.618987 71 309.278094 202.249446 72 373.504828 309.278094 73 551.768633 373.504828 74 633.517281 551.768633 75 518.996136 633.517281 76 355.982517 518.996136 77 165.646426 355.982517 78 214.147734 165.646426 79 376.232433 214.147734 80 663.752541 376.232433 81 907.147303 663.752541 82 978.884455 907.147303 83 1015.529735 978.884455 84 1301.402877 1015.529735 85 1301.364061 1301.402877 86 1091.948799 1301.364061 87 1224.194764 1091.948799 88 1329.350502 1224.194764 89 1207.131623 1329.350502 90 1060.240312 1207.131623 91 767.949669 1060.240312 92 774.300706 767.949669 93 817.763989 774.300706 94 293.776895 817.763989 95 340.894360 293.776895 96 39.676126 340.894360 97 -116.958116 39.676126 98 -318.474086 -116.958116 99 -257.421989 -318.474086 100 -570.427732 -257.421989 101 -1020.985179 -570.427732 102 -1548.318423 -1020.985179 103 -1182.344050 -1548.318423 104 -1006.136123 -1182.344050 105 -1313.149792 -1006.136123 106 -1135.892965 -1313.149792 107 -1079.506973 -1135.892965 108 -1063.461984 -1079.506973 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/7cv7f1291909817.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/8cv7f1291909817.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/9cv7f1291909817.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/www/html/rcomp/tmp/105mo01291909817.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/118n5n1291909817.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/12uolb1291909817.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/138xjk1291909817.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/14bgh81291909817.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/15wgyw1291909817.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/16ize21291909817.tab") + } > > try(system("convert tmp/1y3r61291909817.ps tmp/1y3r61291909817.png",intern=TRUE)) character(0) > try(system("convert tmp/2y3r61291909817.ps tmp/2y3r61291909817.png",intern=TRUE)) character(0) > try(system("convert tmp/39uqr1291909817.ps tmp/39uqr1291909817.png",intern=TRUE)) character(0) > try(system("convert tmp/49uqr1291909817.ps tmp/49uqr1291909817.png",intern=TRUE)) character(0) > try(system("convert tmp/59uqr1291909817.ps tmp/59uqr1291909817.png",intern=TRUE)) character(0) > try(system("convert tmp/61m8u1291909817.ps tmp/61m8u1291909817.png",intern=TRUE)) character(0) > try(system("convert tmp/7cv7f1291909817.ps tmp/7cv7f1291909817.png",intern=TRUE)) character(0) > try(system("convert tmp/8cv7f1291909817.ps tmp/8cv7f1291909817.png",intern=TRUE)) character(0) > try(system("convert tmp/9cv7f1291909817.ps tmp/9cv7f1291909817.png",intern=TRUE)) character(0) > try(system("convert tmp/105mo01291909817.ps tmp/105mo01291909817.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 3.097 1.768 15.400