R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(17848,19592,21092,20899,25890,24965,22225,20977,22897,22785,22769,19637,20203,20450,23083,21738,26766,25280,22574,22729,21378,22902,24989,21116,15169,15846,20927,18273,22538,15596,14034,11366,14861,15149,13577,13026,13190,13196,15826,14733,16307,15703,14589,12043,15057,14053,12698,10888,10045,11549,13767,12434,13116,14211,12266,12602,15714,13742,12745,10491,10057,10900,11771,11992,11933,14504,11727,11477,13578,11555,11846,11397,10066,10269,14279,13870,13695,14420,11424,9704,12464,14301,13464,9893,11572,12380,16692,16052,16459,14761,13654,13480,18068,16560,14530,10650,11651,13735,13360,17818,20613,16231,13862,12004,17734,15034,12609,12320,10833,11350,13648,14890,16325,18045,15616,11926,16855,15083,12520,12355),dim=c(1,120),dimnames=list(c('Pas'),1:120)) > y <- array(NA,dim=c(1,120),dimnames=list(c('Pas'),1:120)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'Linear Trend' > par2 = 'Include Monthly Dummies' > par1 = '1' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > library(lmtest) Loading required package: zoo Attaching package: 'zoo' The following object(s) are masked from package:base : as.Date.numeric > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x Pas M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 t 1 17848 1 0 0 0 0 0 0 0 0 0 0 1 2 19592 0 1 0 0 0 0 0 0 0 0 0 2 3 21092 0 0 1 0 0 0 0 0 0 0 0 3 4 20899 0 0 0 1 0 0 0 0 0 0 0 4 5 25890 0 0 0 0 1 0 0 0 0 0 0 5 6 24965 0 0 0 0 0 1 0 0 0 0 0 6 7 22225 0 0 0 0 0 0 1 0 0 0 0 7 8 20977 0 0 0 0 0 0 0 1 0 0 0 8 9 22897 0 0 0 0 0 0 0 0 1 0 0 9 10 22785 0 0 0 0 0 0 0 0 0 1 0 10 11 22769 0 0 0 0 0 0 0 0 0 0 1 11 12 19637 0 0 0 0 0 0 0 0 0 0 0 12 13 20203 1 0 0 0 0 0 0 0 0 0 0 13 14 20450 0 1 0 0 0 0 0 0 0 0 0 14 15 23083 0 0 1 0 0 0 0 0 0 0 0 15 16 21738 0 0 0 1 0 0 0 0 0 0 0 16 17 26766 0 0 0 0 1 0 0 0 0 0 0 17 18 25280 0 0 0 0 0 1 0 0 0 0 0 18 19 22574 0 0 0 0 0 0 1 0 0 0 0 19 20 22729 0 0 0 0 0 0 0 1 0 0 0 20 21 21378 0 0 0 0 0 0 0 0 1 0 0 21 22 22902 0 0 0 0 0 0 0 0 0 1 0 22 23 24989 0 0 0 0 0 0 0 0 0 0 1 23 24 21116 0 0 0 0 0 0 0 0 0 0 0 24 25 15169 1 0 0 0 0 0 0 0 0 0 0 25 26 15846 0 1 0 0 0 0 0 0 0 0 0 26 27 20927 0 0 1 0 0 0 0 0 0 0 0 27 28 18273 0 0 0 1 0 0 0 0 0 0 0 28 29 22538 0 0 0 0 1 0 0 0 0 0 0 29 30 15596 0 0 0 0 0 1 0 0 0 0 0 30 31 14034 0 0 0 0 0 0 1 0 0 0 0 31 32 11366 0 0 0 0 0 0 0 1 0 0 0 32 33 14861 0 0 0 0 0 0 0 0 1 0 0 33 34 15149 0 0 0 0 0 0 0 0 0 1 0 34 35 13577 0 0 0 0 0 0 0 0 0 0 1 35 36 13026 0 0 0 0 0 0 0 0 0 0 0 36 37 13190 1 0 0 0 0 0 0 0 0 0 0 37 38 13196 0 1 0 0 0 0 0 0 0 0 0 38 39 15826 0 0 1 0 0 0 0 0 0 0 0 39 40 14733 0 0 0 1 0 0 0 0 0 0 0 40 41 16307 0 0 0 0 1 0 0 0 0 0 0 41 42 15703 0 0 0 0 0 1 0 0 0 0 0 42 43 14589 0 0 0 0 0 0 1 0 0 0 0 43 44 12043 0 0 0 0 0 0 0 1 0 0 0 44 45 15057 0 0 0 0 0 0 0 0 1 0 0 45 46 14053 0 0 0 0 0 0 0 0 0 1 0 46 47 12698 0 0 0 0 0 0 0 0 0 0 1 47 48 10888 0 0 0 0 0 0 0 0 0 0 0 48 49 10045 1 0 0 0 0 0 0 0 0 0 0 49 50 11549 0 1 0 0 0 0 0 0 0 0 0 50 51 13767 0 0 1 0 0 0 0 0 0 0 0 51 52 12434 0 0 0 1 0 0 0 0 0 0 0 52 53 13116 0 0 0 0 1 0 0 0 0 0 0 53 54 14211 0 0 0 0 0 1 0 0 0 0 0 54 55 12266 0 0 0 0 0 0 1 0 0 0 0 55 56 12602 0 0 0 0 0 0 0 1 0 0 0 56 57 15714 0 0 0 0 0 0 0 0 1 0 0 57 58 13742 0 0 0 0 0 0 0 0 0 1 0 58 59 12745 0 0 0 0 0 0 0 0 0 0 1 59 60 10491 0 0 0 0 0 0 0 0 0 0 0 60 61 10057 1 0 0 0 0 0 0 0 0 0 0 61 62 10900 0 1 0 0 0 0 0 0 0 0 0 62 63 11771 0 0 1 0 0 0 0 0 0 0 0 63 64 11992 0 0 0 1 0 0 0 0 0 0 0 64 65 11933 0 0 0 0 1 0 0 0 0 0 0 65 66 14504 0 0 0 0 0 1 0 0 0 0 0 66 67 11727 0 0 0 0 0 0 1 0 0 0 0 67 68 11477 0 0 0 0 0 0 0 1 0 0 0 68 69 13578 0 0 0 0 0 0 0 0 1 0 0 69 70 11555 0 0 0 0 0 0 0 0 0 1 0 70 71 11846 0 0 0 0 0 0 0 0 0 0 1 71 72 11397 0 0 0 0 0 0 0 0 0 0 0 72 73 10066 1 0 0 0 0 0 0 0 0 0 0 73 74 10269 0 1 0 0 0 0 0 0 0 0 0 74 75 14279 0 0 1 0 0 0 0 0 0 0 0 75 76 13870 0 0 0 1 0 0 0 0 0 0 0 76 77 13695 0 0 0 0 1 0 0 0 0 0 0 77 78 14420 0 0 0 0 0 1 0 0 0 0 0 78 79 11424 0 0 0 0 0 0 1 0 0 0 0 79 80 9704 0 0 0 0 0 0 0 1 0 0 0 80 81 12464 0 0 0 0 0 0 0 0 1 0 0 81 82 14301 0 0 0 0 0 0 0 0 0 1 0 82 83 13464 0 0 0 0 0 0 0 0 0 0 1 83 84 9893 0 0 0 0 0 0 0 0 0 0 0 84 85 11572 1 0 0 0 0 0 0 0 0 0 0 85 86 12380 0 1 0 0 0 0 0 0 0 0 0 86 87 16692 0 0 1 0 0 0 0 0 0 0 0 87 88 16052 0 0 0 1 0 0 0 0 0 0 0 88 89 16459 0 0 0 0 1 0 0 0 0 0 0 89 90 14761 0 0 0 0 0 1 0 0 0 0 0 90 91 13654 0 0 0 0 0 0 1 0 0 0 0 91 92 13480 0 0 0 0 0 0 0 1 0 0 0 92 93 18068 0 0 0 0 0 0 0 0 1 0 0 93 94 16560 0 0 0 0 0 0 0 0 0 1 0 94 95 14530 0 0 0 0 0 0 0 0 0 0 1 95 96 10650 0 0 0 0 0 0 0 0 0 0 0 96 97 11651 1 0 0 0 0 0 0 0 0 0 0 97 98 13735 0 1 0 0 0 0 0 0 0 0 0 98 99 13360 0 0 1 0 0 0 0 0 0 0 0 99 100 17818 0 0 0 1 0 0 0 0 0 0 0 100 101 20613 0 0 0 0 1 0 0 0 0 0 0 101 102 16231 0 0 0 0 0 1 0 0 0 0 0 102 103 13862 0 0 0 0 0 0 1 0 0 0 0 103 104 12004 0 0 0 0 0 0 0 1 0 0 0 104 105 17734 0 0 0 0 0 0 0 0 1 0 0 105 106 15034 0 0 0 0 0 0 0 0 0 1 0 106 107 12609 0 0 0 0 0 0 0 0 0 0 1 107 108 12320 0 0 0 0 0 0 0 0 0 0 0 108 109 10833 1 0 0 0 0 0 0 0 0 0 0 109 110 11350 0 1 0 0 0 0 0 0 0 0 0 110 111 13648 0 0 1 0 0 0 0 0 0 0 0 111 112 14890 0 0 0 1 0 0 0 0 0 0 0 112 113 16325 0 0 0 0 1 0 0 0 0 0 0 113 114 18045 0 0 0 0 0 1 0 0 0 0 0 114 115 15616 0 0 0 0 0 0 1 0 0 0 0 115 116 11926 0 0 0 0 0 0 0 1 0 0 0 116 117 16855 0 0 0 0 0 0 0 0 1 0 0 117 118 15083 0 0 0 0 0 0 0 0 0 1 0 118 119 12520 0 0 0 0 0 0 0 0 0 0 1 119 120 12355 0 0 0 0 0 0 0 0 0 0 0 120 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) M1 M2 M3 M4 M5 17765.07 -878.53 54.28 2641.60 2536.51 4700.32 M6 M7 M8 M9 M10 M11 3777.23 1672.24 375.45 3474.77 2800.08 1927.89 t -69.51 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -6014 -2851 -31 2380 6895 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 17765.067 1143.005 15.542 < 2e-16 *** M1 -878.528 1417.703 -0.620 0.53678 M2 54.284 1417.183 0.038 0.96952 M3 2641.595 1416.712 1.865 0.06498 . M4 2536.507 1416.291 1.791 0.07613 . M5 4700.319 1415.919 3.320 0.00123 ** M6 3777.230 1415.597 2.668 0.00881 ** M7 1672.242 1415.324 1.182 0.24001 M8 375.454 1415.101 0.265 0.79127 M9 3474.765 1414.927 2.456 0.01567 * M10 2800.077 1414.803 1.979 0.05037 . M11 1927.888 1414.729 1.363 0.17583 t -69.512 8.378 -8.297 3.49e-13 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 3163 on 107 degrees of freedom Multiple R-squared: 0.4856, Adjusted R-squared: 0.4279 F-statistic: 8.419 on 12 and 107 DF, p-value: 5.109e-11 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 0.0081843845 1.636877e-02 9.918156e-01 [2,] 0.0019187113 3.837423e-03 9.980813e-01 [3,] 0.0008436644 1.687329e-03 9.991563e-01 [4,] 0.0003041990 6.083980e-04 9.996958e-01 [5,] 0.0001182823 2.365645e-04 9.998817e-01 [6,] 0.0008768266 1.753653e-03 9.991232e-01 [7,] 0.0004455692 8.911383e-04 9.995544e-01 [8,] 0.0008004583 1.600917e-03 9.991995e-01 [9,] 0.0008605387 1.721077e-03 9.991395e-01 [10,] 0.0802174726 1.604349e-01 9.197825e-01 [11,] 0.2490160518 4.980321e-01 7.509839e-01 [12,] 0.2982822286 5.965645e-01 7.017178e-01 [13,] 0.3643403813 7.286808e-01 6.356596e-01 [14,] 0.6516880233 6.966240e-01 3.483120e-01 [15,] 0.9844014267 3.119715e-02 1.559857e-02 [16,] 0.9974140816 5.171837e-03 2.585918e-03 [17,] 0.9998326639 3.346723e-04 1.673361e-04 [18,] 0.9998620999 2.758001e-04 1.379001e-04 [19,] 0.9999045163 1.909674e-04 9.548368e-05 [20,] 0.9999777820 4.443608e-05 2.221804e-05 [21,] 0.9999840039 3.199224e-05 1.599612e-05 [22,] 0.9999880323 2.393533e-05 1.196767e-05 [23,] 0.9999857993 2.840147e-05 1.420074e-05 [24,] 0.9999869638 2.607232e-05 1.303616e-05 [25,] 0.9999785660 4.286793e-05 2.143397e-05 [26,] 0.9999826252 3.474954e-05 1.737477e-05 [27,] 0.9999739626 5.207485e-05 2.603743e-05 [28,] 0.9999781218 4.375633e-05 2.187816e-05 [29,] 0.9999684171 6.316573e-05 3.158287e-05 [30,] 0.9999492723 1.014555e-04 5.072774e-05 [31,] 0.9999203156 1.593687e-04 7.968437e-05 [32,] 0.9998969142 2.061715e-04 1.030858e-04 [33,] 0.9998543585 2.912830e-04 1.456415e-04 [34,] 0.9997659908 4.680183e-04 2.340092e-04 [35,] 0.9996987109 6.025782e-04 3.012891e-04 [36,] 0.9995809205 8.381590e-04 4.190795e-04 [37,] 0.9993502705 1.299459e-03 6.497295e-04 [38,] 0.9992324017 1.535197e-03 7.675983e-04 [39,] 0.9988078758 2.384248e-03 1.192124e-03 [40,] 0.9982256407 3.548719e-03 1.774359e-03 [41,] 0.9987795198 2.440960e-03 1.220480e-03 [42,] 0.9991860461 1.627908e-03 8.139539e-04 [43,] 0.9989287420 2.142516e-03 1.071258e-03 [44,] 0.9986689916 2.662017e-03 1.331008e-03 [45,] 0.9981550971 3.689806e-03 1.844903e-03 [46,] 0.9978067674 4.386465e-03 2.193233e-03 [47,] 0.9973019618 5.396076e-03 2.698038e-03 [48,] 0.9960711398 7.857720e-03 3.928860e-03 [49,] 0.9959401897 8.119621e-03 4.059810e-03 [50,] 0.9974150241 5.169952e-03 2.584976e-03 [51,] 0.9968221661 6.355668e-03 3.177834e-03 [52,] 0.9956265228 8.746954e-03 4.373477e-03 [53,] 0.9951250467 9.749907e-03 4.874953e-03 [54,] 0.9944979271 1.100415e-02 5.502073e-03 [55,] 0.9945417772 1.091645e-02 5.458223e-03 [56,] 0.9920586634 1.588267e-02 7.941337e-03 [57,] 0.9919915165 1.601697e-02 8.008483e-03 [58,] 0.9909208619 1.815828e-02 9.079138e-03 [59,] 0.9893643814 2.127124e-02 1.063562e-02 [60,] 0.9891108787 2.177824e-02 1.088912e-02 [61,] 0.9902291067 1.954179e-02 9.770893e-03 [62,] 0.9932006727 1.359865e-02 6.799327e-03 [63,] 0.9920278491 1.594430e-02 7.972151e-03 [64,] 0.9924679908 1.506402e-02 7.532009e-03 [65,] 0.9925456282 1.490874e-02 7.454372e-03 [66,] 0.9991514936 1.697013e-03 8.485064e-04 [67,] 0.9991610015 1.677997e-03 8.389985e-04 [68,] 0.9987725340 2.454932e-03 1.227466e-03 [69,] 0.9988912214 2.217557e-03 1.108779e-03 [70,] 0.9986294727 2.741055e-03 1.370527e-03 [71,] 0.9982576713 3.484657e-03 1.742329e-03 [72,] 0.9993243430 1.351314e-03 6.756570e-04 [73,] 0.9991967211 1.606558e-03 8.032789e-04 [74,] 0.9993450738 1.309852e-03 6.549262e-04 [75,] 0.9996587670 6.824660e-04 3.412330e-04 [76,] 0.9996432207 7.135586e-04 3.567793e-04 [77,] 0.9993976180 1.204764e-03 6.023820e-04 [78,] 0.9990992527 1.801495e-03 9.007473e-04 [79,] 0.9985062259 2.987548e-03 1.493774e-03 [80,] 0.9976908547 4.618291e-03 2.309145e-03 [81,] 0.9977823788 4.435242e-03 2.217621e-03 [82,] 0.9951798440 9.640312e-03 4.820156e-03 [83,] 0.9932743879 1.345122e-02 6.725612e-03 [84,] 0.9853985226 2.920295e-02 1.460148e-02 [85,] 0.9858839799 2.823204e-02 1.411602e-02 [86,] 0.9993727054 1.254589e-03 6.272946e-04 [87,] 0.9991684388 1.663122e-03 8.315612e-04 [88,] 0.9998803027 2.393947e-04 1.196973e-04 [89,] 0.9986169469 2.766106e-03 1.383053e-03 > postscript(file="/var/www/html/rcomp/tmp/1data1292064021.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/2data1292064021.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/351sv1292064021.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/451sv1292064021.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/5yb9y1292064021.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 120 Frequency = 1 1 2 3 4 5 6 1030.97273 1911.67273 893.87273 875.47273 3772.17273 3839.77273 7 8 9 10 11 12 3274.27273 3392.57273 2282.77273 2914.97273 3840.67273 2706.07273 13 14 15 16 17 18 4220.11212 3603.81212 3719.01212 2548.61212 5482.31212 4988.91212 19 20 21 22 23 24 4457.41212 5978.71212 1597.91212 3866.11212 6894.81212 5019.21212 25 26 27 28 29 30 20.25152 -166.04848 2397.15152 -82.24848 2088.45152 -3860.94848 31 32 33 34 35 36 -3248.44848 -4550.14848 -4084.94848 -3052.74848 -3683.04848 -2236.64848 37 38 39 40 41 42 -1124.60909 -1981.90909 -1869.70909 -2788.10909 -3308.40909 -2919.80909 43 44 45 46 47 48 -1859.30909 -3039.00909 -3054.80909 -3314.60909 -3727.90909 -3540.50909 49 50 51 52 53 54 -3435.46970 -2794.76970 -3094.56970 -4252.96970 -5665.26970 -3577.66970 55 56 57 58 59 60 -3348.16970 -1645.86970 -1563.66970 -2791.46970 -2846.76970 -3103.36970 61 62 63 64 65 66 -2589.33030 -2609.63030 -4256.43030 -3860.83030 -6014.13030 -2450.53030 67 68 69 70 71 72 -3053.03030 -1936.73030 -2865.53030 -4144.33030 -2911.63030 -1363.23030 73 74 75 76 77 78 -1746.19091 -2406.49091 -914.29091 -1148.69091 -3417.99091 -1700.39091 79 80 81 82 83 84 -2521.89091 -2875.59091 -3145.39091 -564.19091 -459.49091 -2033.09091 85 86 87 88 89 90 593.94848 538.64848 2332.84848 1867.44848 180.14848 -525.25152 91 92 93 94 95 96 542.24848 1734.54848 3292.74848 2528.94848 1440.64848 -441.95152 97 98 99 100 101 102 1507.08788 2727.78788 -165.01212 4467.58788 5168.28788 1778.88788 103 104 105 106 107 108 1584.38788 1092.68788 3792.88788 1837.08788 353.78788 2062.18788 109 110 111 112 113 114 1523.22727 1176.92727 957.12727 2373.72727 1714.42727 4427.02727 115 116 117 118 119 120 4172.52727 1848.82727 3748.02727 2720.22727 1098.92727 2931.32727 > postscript(file="/var/www/html/rcomp/tmp/6yb9y1292064021.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 120 Frequency = 1 lag(myerror, k = 1) myerror 0 1030.97273 NA 1 1911.67273 1030.97273 2 893.87273 1911.67273 3 875.47273 893.87273 4 3772.17273 875.47273 5 3839.77273 3772.17273 6 3274.27273 3839.77273 7 3392.57273 3274.27273 8 2282.77273 3392.57273 9 2914.97273 2282.77273 10 3840.67273 2914.97273 11 2706.07273 3840.67273 12 4220.11212 2706.07273 13 3603.81212 4220.11212 14 3719.01212 3603.81212 15 2548.61212 3719.01212 16 5482.31212 2548.61212 17 4988.91212 5482.31212 18 4457.41212 4988.91212 19 5978.71212 4457.41212 20 1597.91212 5978.71212 21 3866.11212 1597.91212 22 6894.81212 3866.11212 23 5019.21212 6894.81212 24 20.25152 5019.21212 25 -166.04848 20.25152 26 2397.15152 -166.04848 27 -82.24848 2397.15152 28 2088.45152 -82.24848 29 -3860.94848 2088.45152 30 -3248.44848 -3860.94848 31 -4550.14848 -3248.44848 32 -4084.94848 -4550.14848 33 -3052.74848 -4084.94848 34 -3683.04848 -3052.74848 35 -2236.64848 -3683.04848 36 -1124.60909 -2236.64848 37 -1981.90909 -1124.60909 38 -1869.70909 -1981.90909 39 -2788.10909 -1869.70909 40 -3308.40909 -2788.10909 41 -2919.80909 -3308.40909 42 -1859.30909 -2919.80909 43 -3039.00909 -1859.30909 44 -3054.80909 -3039.00909 45 -3314.60909 -3054.80909 46 -3727.90909 -3314.60909 47 -3540.50909 -3727.90909 48 -3435.46970 -3540.50909 49 -2794.76970 -3435.46970 50 -3094.56970 -2794.76970 51 -4252.96970 -3094.56970 52 -5665.26970 -4252.96970 53 -3577.66970 -5665.26970 54 -3348.16970 -3577.66970 55 -1645.86970 -3348.16970 56 -1563.66970 -1645.86970 57 -2791.46970 -1563.66970 58 -2846.76970 -2791.46970 59 -3103.36970 -2846.76970 60 -2589.33030 -3103.36970 61 -2609.63030 -2589.33030 62 -4256.43030 -2609.63030 63 -3860.83030 -4256.43030 64 -6014.13030 -3860.83030 65 -2450.53030 -6014.13030 66 -3053.03030 -2450.53030 67 -1936.73030 -3053.03030 68 -2865.53030 -1936.73030 69 -4144.33030 -2865.53030 70 -2911.63030 -4144.33030 71 -1363.23030 -2911.63030 72 -1746.19091 -1363.23030 73 -2406.49091 -1746.19091 74 -914.29091 -2406.49091 75 -1148.69091 -914.29091 76 -3417.99091 -1148.69091 77 -1700.39091 -3417.99091 78 -2521.89091 -1700.39091 79 -2875.59091 -2521.89091 80 -3145.39091 -2875.59091 81 -564.19091 -3145.39091 82 -459.49091 -564.19091 83 -2033.09091 -459.49091 84 593.94848 -2033.09091 85 538.64848 593.94848 86 2332.84848 538.64848 87 1867.44848 2332.84848 88 180.14848 1867.44848 89 -525.25152 180.14848 90 542.24848 -525.25152 91 1734.54848 542.24848 92 3292.74848 1734.54848 93 2528.94848 3292.74848 94 1440.64848 2528.94848 95 -441.95152 1440.64848 96 1507.08788 -441.95152 97 2727.78788 1507.08788 98 -165.01212 2727.78788 99 4467.58788 -165.01212 100 5168.28788 4467.58788 101 1778.88788 5168.28788 102 1584.38788 1778.88788 103 1092.68788 1584.38788 104 3792.88788 1092.68788 105 1837.08788 3792.88788 106 353.78788 1837.08788 107 2062.18788 353.78788 108 1523.22727 2062.18788 109 1176.92727 1523.22727 110 957.12727 1176.92727 111 2373.72727 957.12727 112 1714.42727 2373.72727 113 4427.02727 1714.42727 114 4172.52727 4427.02727 115 1848.82727 4172.52727 116 3748.02727 1848.82727 117 2720.22727 3748.02727 118 1098.92727 2720.22727 119 2931.32727 1098.92727 120 NA 2931.32727 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] 1911.67273 1030.97273 [2,] 893.87273 1911.67273 [3,] 875.47273 893.87273 [4,] 3772.17273 875.47273 [5,] 3839.77273 3772.17273 [6,] 3274.27273 3839.77273 [7,] 3392.57273 3274.27273 [8,] 2282.77273 3392.57273 [9,] 2914.97273 2282.77273 [10,] 3840.67273 2914.97273 [11,] 2706.07273 3840.67273 [12,] 4220.11212 2706.07273 [13,] 3603.81212 4220.11212 [14,] 3719.01212 3603.81212 [15,] 2548.61212 3719.01212 [16,] 5482.31212 2548.61212 [17,] 4988.91212 5482.31212 [18,] 4457.41212 4988.91212 [19,] 5978.71212 4457.41212 [20,] 1597.91212 5978.71212 [21,] 3866.11212 1597.91212 [22,] 6894.81212 3866.11212 [23,] 5019.21212 6894.81212 [24,] 20.25152 5019.21212 [25,] -166.04848 20.25152 [26,] 2397.15152 -166.04848 [27,] -82.24848 2397.15152 [28,] 2088.45152 -82.24848 [29,] -3860.94848 2088.45152 [30,] -3248.44848 -3860.94848 [31,] -4550.14848 -3248.44848 [32,] -4084.94848 -4550.14848 [33,] -3052.74848 -4084.94848 [34,] -3683.04848 -3052.74848 [35,] -2236.64848 -3683.04848 [36,] -1124.60909 -2236.64848 [37,] -1981.90909 -1124.60909 [38,] -1869.70909 -1981.90909 [39,] -2788.10909 -1869.70909 [40,] -3308.40909 -2788.10909 [41,] -2919.80909 -3308.40909 [42,] -1859.30909 -2919.80909 [43,] -3039.00909 -1859.30909 [44,] -3054.80909 -3039.00909 [45,] -3314.60909 -3054.80909 [46,] -3727.90909 -3314.60909 [47,] -3540.50909 -3727.90909 [48,] -3435.46970 -3540.50909 [49,] -2794.76970 -3435.46970 [50,] -3094.56970 -2794.76970 [51,] -4252.96970 -3094.56970 [52,] -5665.26970 -4252.96970 [53,] -3577.66970 -5665.26970 [54,] -3348.16970 -3577.66970 [55,] -1645.86970 -3348.16970 [56,] -1563.66970 -1645.86970 [57,] -2791.46970 -1563.66970 [58,] -2846.76970 -2791.46970 [59,] -3103.36970 -2846.76970 [60,] -2589.33030 -3103.36970 [61,] -2609.63030 -2589.33030 [62,] -4256.43030 -2609.63030 [63,] -3860.83030 -4256.43030 [64,] -6014.13030 -3860.83030 [65,] -2450.53030 -6014.13030 [66,] -3053.03030 -2450.53030 [67,] -1936.73030 -3053.03030 [68,] -2865.53030 -1936.73030 [69,] -4144.33030 -2865.53030 [70,] -2911.63030 -4144.33030 [71,] -1363.23030 -2911.63030 [72,] -1746.19091 -1363.23030 [73,] -2406.49091 -1746.19091 [74,] -914.29091 -2406.49091 [75,] -1148.69091 -914.29091 [76,] -3417.99091 -1148.69091 [77,] -1700.39091 -3417.99091 [78,] -2521.89091 -1700.39091 [79,] -2875.59091 -2521.89091 [80,] -3145.39091 -2875.59091 [81,] -564.19091 -3145.39091 [82,] -459.49091 -564.19091 [83,] -2033.09091 -459.49091 [84,] 593.94848 -2033.09091 [85,] 538.64848 593.94848 [86,] 2332.84848 538.64848 [87,] 1867.44848 2332.84848 [88,] 180.14848 1867.44848 [89,] -525.25152 180.14848 [90,] 542.24848 -525.25152 [91,] 1734.54848 542.24848 [92,] 3292.74848 1734.54848 [93,] 2528.94848 3292.74848 [94,] 1440.64848 2528.94848 [95,] -441.95152 1440.64848 [96,] 1507.08788 -441.95152 [97,] 2727.78788 1507.08788 [98,] -165.01212 2727.78788 [99,] 4467.58788 -165.01212 [100,] 5168.28788 4467.58788 [101,] 1778.88788 5168.28788 [102,] 1584.38788 1778.88788 [103,] 1092.68788 1584.38788 [104,] 3792.88788 1092.68788 [105,] 1837.08788 3792.88788 [106,] 353.78788 1837.08788 [107,] 2062.18788 353.78788 [108,] 1523.22727 2062.18788 [109,] 1176.92727 1523.22727 [110,] 957.12727 1176.92727 [111,] 2373.72727 957.12727 [112,] 1714.42727 2373.72727 [113,] 4427.02727 1714.42727 [114,] 4172.52727 4427.02727 [115,] 1848.82727 4172.52727 [116,] 3748.02727 1848.82727 [117,] 2720.22727 3748.02727 [118,] 1098.92727 2720.22727 [119,] 2931.32727 1098.92727 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 1911.67273 1030.97273 2 893.87273 1911.67273 3 875.47273 893.87273 4 3772.17273 875.47273 5 3839.77273 3772.17273 6 3274.27273 3839.77273 7 3392.57273 3274.27273 8 2282.77273 3392.57273 9 2914.97273 2282.77273 10 3840.67273 2914.97273 11 2706.07273 3840.67273 12 4220.11212 2706.07273 13 3603.81212 4220.11212 14 3719.01212 3603.81212 15 2548.61212 3719.01212 16 5482.31212 2548.61212 17 4988.91212 5482.31212 18 4457.41212 4988.91212 19 5978.71212 4457.41212 20 1597.91212 5978.71212 21 3866.11212 1597.91212 22 6894.81212 3866.11212 23 5019.21212 6894.81212 24 20.25152 5019.21212 25 -166.04848 20.25152 26 2397.15152 -166.04848 27 -82.24848 2397.15152 28 2088.45152 -82.24848 29 -3860.94848 2088.45152 30 -3248.44848 -3860.94848 31 -4550.14848 -3248.44848 32 -4084.94848 -4550.14848 33 -3052.74848 -4084.94848 34 -3683.04848 -3052.74848 35 -2236.64848 -3683.04848 36 -1124.60909 -2236.64848 37 -1981.90909 -1124.60909 38 -1869.70909 -1981.90909 39 -2788.10909 -1869.70909 40 -3308.40909 -2788.10909 41 -2919.80909 -3308.40909 42 -1859.30909 -2919.80909 43 -3039.00909 -1859.30909 44 -3054.80909 -3039.00909 45 -3314.60909 -3054.80909 46 -3727.90909 -3314.60909 47 -3540.50909 -3727.90909 48 -3435.46970 -3540.50909 49 -2794.76970 -3435.46970 50 -3094.56970 -2794.76970 51 -4252.96970 -3094.56970 52 -5665.26970 -4252.96970 53 -3577.66970 -5665.26970 54 -3348.16970 -3577.66970 55 -1645.86970 -3348.16970 56 -1563.66970 -1645.86970 57 -2791.46970 -1563.66970 58 -2846.76970 -2791.46970 59 -3103.36970 -2846.76970 60 -2589.33030 -3103.36970 61 -2609.63030 -2589.33030 62 -4256.43030 -2609.63030 63 -3860.83030 -4256.43030 64 -6014.13030 -3860.83030 65 -2450.53030 -6014.13030 66 -3053.03030 -2450.53030 67 -1936.73030 -3053.03030 68 -2865.53030 -1936.73030 69 -4144.33030 -2865.53030 70 -2911.63030 -4144.33030 71 -1363.23030 -2911.63030 72 -1746.19091 -1363.23030 73 -2406.49091 -1746.19091 74 -914.29091 -2406.49091 75 -1148.69091 -914.29091 76 -3417.99091 -1148.69091 77 -1700.39091 -3417.99091 78 -2521.89091 -1700.39091 79 -2875.59091 -2521.89091 80 -3145.39091 -2875.59091 81 -564.19091 -3145.39091 82 -459.49091 -564.19091 83 -2033.09091 -459.49091 84 593.94848 -2033.09091 85 538.64848 593.94848 86 2332.84848 538.64848 87 1867.44848 2332.84848 88 180.14848 1867.44848 89 -525.25152 180.14848 90 542.24848 -525.25152 91 1734.54848 542.24848 92 3292.74848 1734.54848 93 2528.94848 3292.74848 94 1440.64848 2528.94848 95 -441.95152 1440.64848 96 1507.08788 -441.95152 97 2727.78788 1507.08788 98 -165.01212 2727.78788 99 4467.58788 -165.01212 100 5168.28788 4467.58788 101 1778.88788 5168.28788 102 1584.38788 1778.88788 103 1092.68788 1584.38788 104 3792.88788 1092.68788 105 1837.08788 3792.88788 106 353.78788 1837.08788 107 2062.18788 353.78788 108 1523.22727 2062.18788 109 1176.92727 1523.22727 110 957.12727 1176.92727 111 2373.72727 957.12727 112 1714.42727 2373.72727 113 4427.02727 1714.42727 114 4172.52727 4427.02727 115 1848.82727 4172.52727 116 3748.02727 1848.82727 117 2720.22727 3748.02727 118 1098.92727 2720.22727 119 2931.32727 1098.92727 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/79kqj1292064021.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/89kqj1292064021.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/99kqj1292064021.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/www/html/rcomp/tmp/10jbq41292064021.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/115u6a1292064021.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/12qu5x1292064021.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/13fd291292064021.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/14q41u1292064021.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/15b5z01292064021.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/167ffr1292064021.tab") + } > > try(system("convert tmp/1data1292064021.ps tmp/1data1292064021.png",intern=TRUE)) character(0) > try(system("convert tmp/2data1292064021.ps tmp/2data1292064021.png",intern=TRUE)) character(0) > try(system("convert tmp/351sv1292064021.ps tmp/351sv1292064021.png",intern=TRUE)) character(0) > try(system("convert tmp/451sv1292064021.ps tmp/451sv1292064021.png",intern=TRUE)) character(0) > try(system("convert tmp/5yb9y1292064021.ps tmp/5yb9y1292064021.png",intern=TRUE)) character(0) > try(system("convert tmp/6yb9y1292064021.ps tmp/6yb9y1292064021.png",intern=TRUE)) character(0) > try(system("convert tmp/79kqj1292064021.ps tmp/79kqj1292064021.png",intern=TRUE)) character(0) > try(system("convert tmp/89kqj1292064021.ps tmp/89kqj1292064021.png",intern=TRUE)) character(0) > try(system("convert tmp/99kqj1292064021.ps tmp/99kqj1292064021.png",intern=TRUE)) character(0) > try(system("convert tmp/10jbq41292064021.ps tmp/10jbq41292064021.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 3.340 1.729 12.091