R version 2.12.0 (2010-10-15) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(17848,19592,21092,20899,25890,24965,22225,20977,22897,22785,22769,19637,20203,20450,23083,21738,26766,25280,22574,22729,21378,22902,24989,21116,15169,15846,20927,18273,22538,15596,14034,11366,14861,15149,13577,13026,13190,13196,15826,14733,16307,15703,14589,12043,15057,14053,12698,10888,10045,11549,13767,12434,13116,14211,12266,12602,15714,13742,12745,10491,10057,10900,11771,11992,11933,14504,11727,11477,13578,11555,11846,11397,10066,10269,14279,13870,13695,14420,11424,9704,12464,14301,13464,9893,11572,12380,16692,16052,16459,14761,13654,13480,18068,16560,14530,10650,11651,13735,13360,17818,20613,16231,13862,12004,17734,15034,12609,12320,10833,11350,13648,14890,16325,18045,15616,11926,16855,15083,12520,12355) > par10 = 'FALSE' > par9 = '1' > par8 = '0' > par7 = '0' > par6 = '0' > par5 = '12' > par4 = '1' > par3 = '1' > par2 = '1' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: sma1 -0.6358 s.e. 0.1292 sigma^2 estimated as 3773218: log likelihood = -857.22, aic = 1718.44 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 109 End = 120 Frequency = 1 [1] 12625.33 13823.48 15808.49 17022.06 18496.52 16669.88 14546.69 13383.76 [9] 17546.41 16169.42 14603.01 12681.47 $se Time Series: Start = 109 End = 120 Frequency = 1 [1] 1942.890 2747.488 3364.900 3885.411 4343.994 4758.587 5139.846 5494.714 [9] 5828.015 6143.258 6443.096 6729.588 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 109 End = 120 Frequency = 1 [1] 8817.2625 8438.4006 9213.2814 9406.6520 9982.2933 7343.0518 4472.5872 [8] 2614.1169 6123.4970 4128.6294 1974.5396 -508.5257 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 109 End = 120 Frequency = 1 [1] 16433.39 19208.55 22403.69 24637.46 27010.75 25996.71 24620.79 24153.40 [9] 28969.31 28210.20 27231.48 25871.46 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 17848.00 19592.00 21092.00 20899.00 25890.00 24965.00 22225.00 20977.00 [9] 22897.00 22785.00 22769.00 19637.00 20203.00 20450.00 23083.00 21738.00 [17] 26766.00 25280.00 22574.00 22729.00 21378.00 22902.00 24989.00 21116.00 [25] 15169.00 15846.00 20927.00 18273.00 22538.00 15596.00 14034.00 11366.00 [33] 14861.00 15149.00 13577.00 13026.00 13190.00 13196.00 15826.00 14733.00 [41] 16307.00 15703.00 14589.00 12043.00 15057.00 14053.00 12698.00 10888.00 [49] 10045.00 11549.00 13767.00 12434.00 13116.00 14211.00 12266.00 12602.00 [57] 15714.00 13742.00 12745.00 10491.00 10057.00 10900.00 11771.00 11992.00 [65] 11933.00 14504.00 11727.00 11477.00 13578.00 11555.00 11846.00 11397.00 [73] 10066.00 10269.00 14279.00 13870.00 13695.00 14420.00 11424.00 9704.00 [81] 12464.00 14301.00 13464.00 9893.00 11572.00 12380.00 16692.00 16052.00 [89] 16459.00 14761.00 13654.00 13480.00 18068.00 16560.00 14530.00 10650.00 [97] 11651.00 13735.00 13360.00 17818.00 20613.00 16231.00 13862.00 12004.00 [105] 17734.00 15034.00 12609.00 12320.00 12625.33 13823.48 15808.49 17022.06 [113] 18496.52 16669.88 14546.69 13383.76 17546.41 16169.42 14603.01 12681.47 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 109 End = 120 Frequency = 1 [1] 0.1538883 0.1987552 0.2128541 0.2282574 0.2348547 0.2854602 0.3533345 [8] 0.4105510 0.3321486 0.3799308 0.4412171 0.5306632 > postscript(file="/var/www/rcomp/tmp/1fto71292071839.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/rcomp/tmp/2t3mg1292071839.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/3tv0c1292071839.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/4weh01292071839.tab") > > try(system("convert tmp/1fto71292071839.ps tmp/1fto71292071839.png",intern=TRUE)) character(0) > try(system("convert tmp/2t3mg1292071839.ps tmp/2t3mg1292071839.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.770 0.380 1.163