R version 2.12.0 (2010-10-15) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(8 + ,350 + ,165 + ,3693 + ,11.5 + ,8 + ,318 + ,150 + ,3436 + ,11 + ,8 + ,302 + ,140 + ,3449 + ,10.5 + ,8 + ,429 + ,198 + ,4341 + ,10 + ,8 + ,440 + ,215 + ,4312 + ,8.5 + ,8 + ,455 + ,225 + ,4425 + ,10 + ,8 + ,383 + ,170 + ,3563 + ,10 + ,8 + ,340 + ,160 + ,3609 + ,8 + ,8 + ,455 + ,225 + ,3086 + ,10 + ,4 + ,113 + ,95 + ,2372 + ,15 + ,6 + ,199 + ,97 + ,2774 + ,15.5 + ,4 + ,97 + ,46 + ,1835 + ,20.5 + ,4 + ,110 + ,87 + ,2672 + ,17.5 + ,4 + ,104 + ,95 + ,2375 + ,17.5 + ,4 + ,121 + ,113 + ,2234 + ,12.5 + ,8 + ,360 + ,215 + ,4615 + ,14 + ,8 + ,307 + ,200 + ,4376 + ,15 + ,8 + ,304 + ,193 + ,4732 + ,18.5 + ,4 + ,97 + ,88 + ,2130 + ,14.5 + ,4 + ,113 + ,95 + ,2228 + ,14 + ,6 + ,250 + ,100 + ,3329 + ,15.5 + ,6 + ,232 + ,100 + ,3288 + ,15.5 + ,8 + ,350 + ,165 + ,4209 + ,12 + ,8 + ,318 + ,150 + ,4096 + ,13 + ,8 + ,400 + ,170 + ,4746 + ,12 + ,8 + ,400 + ,175 + ,5140 + ,12 + ,4 + ,140 + ,72 + ,2408 + ,19 + ,6 + ,250 + ,100 + ,3282 + ,15 + ,4 + ,122 + ,86 + ,2220 + ,14 + ,4 + ,116 + ,90 + ,2123 + ,14 + ,4 + ,88 + ,76 + ,2065 + ,14.5 + ,4 + ,71 + ,65 + ,1773 + ,19 + ,4 + ,97 + ,60 + ,1834 + ,19 + ,4 + ,91 + ,70 + ,1955 + ,20.5 + ,4 + ,97.5 + ,80 + ,2126 + ,17 + ,4 + ,122 + ,86 + ,2226 + ,16.5 + ,8 + ,350 + ,165 + ,4274 + ,12 + ,8 + ,318 + ,150 + ,4135 + ,13.5 + ,8 + ,351 + ,153 + ,4129 + ,13 + ,8 + ,429 + ,208 + ,4633 + ,11 + ,8 + ,350 + ,155 + ,4502 + ,13.5 + ,8 + ,400 + ,190 + ,4422 + ,12.5 + ,3 + ,70 + ,97 + ,2330 + ,13.5 + ,8 + ,307 + ,130 + ,4098 + ,14 + ,8 + ,302 + ,140 + ,4294 + ,16 + ,4 + ,121 + ,112 + ,2933 + ,14.5 + ,4 + ,121 + ,76 + ,2511 + ,18 + ,4 + ,122 + ,86 + ,2395 + ,16 + ,4 + ,120 + ,97 + ,2506 + ,14.5 + ,4 + ,98 + ,80 + ,2164 + ,15 + ,8 + ,350 + ,175 + ,4100 + ,13 + ,8 + ,304 + ,150 + ,3672 + ,11.5 + ,8 + ,302 + ,137 + ,4042 + ,14.5 + ,8 + ,318 + ,150 + ,3777 + ,12.5 + ,8 + ,400 + ,150 + ,4464 + ,12 + ,8 + ,351 + ,158 + ,4363 + ,13 + ,8 + ,440 + ,215 + ,4735 + ,11 + ,8 + ,455 + ,225 + ,4951 + ,11 + ,6 + ,225 + ,105 + ,3121 + ,16.5 + ,6 + ,250 + ,100 + ,3278 + ,18 + ,6 + ,250 + ,88 + ,3021 + ,16.5 + ,6 + ,198 + ,95 + ,2904 + ,16 + ,8 + ,400 + ,150 + ,4997 + ,14 + ,8 + ,350 + ,180 + ,4499 + ,12.5 + ,6 + ,232 + ,100 + ,2789 + ,15 + ,4 + ,140 + ,72 + ,2401 + ,19.5 + ,4 + ,108 + ,94 + ,2379 + ,16.5 + ,4 + ,122 + ,85 + ,2310 + ,18.5 + ,6 + ,155 + ,107 + ,2472 + ,14 + ,8 + ,350 + ,145 + ,4082 + ,13 + ,8 + ,400 + ,230 + ,4278 + ,9.5 + ,4 + ,116 + ,75 + ,2158 + ,15.5 + ,4 + ,114 + ,91 + ,2582 + ,14 + ,8 + ,318 + ,150 + ,3399 + ,11 + ,4 + ,121 + ,110 + ,2660 + ,14 + ,8 + ,350 + ,180 + ,3664 + ,11 + ,6 + ,198 + ,95 + ,3102 + ,16.5 + ,6 + ,232 + ,100 + ,2901 + ,16 + ,4 + ,122 + ,80 + ,2451 + ,16.5 + ,4 + ,71 + ,65 + ,1836 + ,21 + ,6 + ,250 + ,100 + ,3781 + ,17 + ,6 + ,258 + ,110 + ,3632 + ,18 + ,8 + ,302 + ,140 + ,4141 + ,14 + ,8 + ,350 + ,150 + ,4699 + ,14.5 + ,8 + ,302 + ,140 + ,4638 + ,16 + ,8 + ,304 + ,150 + ,4257 + ,15.5 + ,4 + ,79 + ,67 + ,1963 + ,15.5 + ,4 + ,97 + ,78 + ,2300 + ,14.5 + ,4 + ,83 + ,61 + ,2003 + ,19 + ,4 + ,90 + ,75 + ,2125 + ,14.5 + ,4 + ,116 + ,75 + ,2246 + ,14 + ,4 + ,120 + ,97 + ,2489 + ,15 + ,4 + ,79 + ,67 + ,2000 + ,16 + ,6 + ,225 + ,95 + ,3264 + ,16 + ,6 + ,250 + ,72 + ,3158 + ,19.5 + ,8 + ,400 + ,170 + ,4668 + ,11.5 + ,8 + ,350 + ,145 + ,4440 + ,14 + ,8 + ,351 + ,148 + ,4657 + ,13.5 + ,6 + ,231 + ,110 + ,3907 + ,21 + ,6 + ,258 + ,110 + ,3730 + ,19 + ,6 + ,225 + ,95 + ,3785 + ,19 + ,8 + ,262 + ,110 + ,3221 + ,13.5 + ,8 + ,302 + ,129 + ,3169 + ,12 + ,4 + ,140 + ,83 + ,2639 + ,17 + ,6 + ,232 + ,100 + ,2914 + ,16 + ,4 + ,134 + ,96 + ,2702 + ,13.5 + ,4 + ,90 + ,71 + ,2223 + ,16.5 + ,6 + ,171 + ,97 + ,2984 + ,14.5 + ,4 + ,115 + ,95 + ,2694 + ,15 + ,4 + ,120 + ,88 + ,2957 + ,17 + ,4 + ,121 + ,115 + ,2671 + ,13.5 + ,4 + ,91 + ,53 + ,1795 + ,17.5 + ,4 + ,116 + ,81 + ,2220 + ,16.9 + ,4 + ,140 + ,92 + ,2572 + ,14.9 + ,4 + ,101 + ,83 + ,2202 + ,15.3 + ,8 + ,305 + ,140 + ,4215 + ,13 + ,8 + ,304 + ,120 + ,3962 + ,13.9 + ,8 + ,351 + ,152 + ,4215 + ,12.8 + ,6 + ,250 + ,105 + ,3353 + ,14.5 + ,6 + ,200 + ,81 + ,3012 + ,17.6 + ,4 + ,85 + ,52 + ,2035 + ,22.2 + ,4 + ,98 + ,60 + ,2164 + ,22.1 + ,6 + ,225 + ,100 + ,3651 + ,17.7 + ,6 + ,250 + ,110 + ,3645 + ,16.2 + ,6 + ,258 + ,95 + ,3193 + ,17.8 + ,4 + ,85 + ,70 + ,1990 + ,17 + ,4 + ,97 + ,75 + ,2155 + ,16.4 + ,4 + ,130 + ,102 + ,3150 + ,15.7 + ,8 + ,318 + ,150 + ,3940 + ,13.2 + ,6 + ,168 + ,120 + ,3820 + ,16.7 + ,8 + ,350 + ,180 + ,4380 + ,12.1 + ,8 + ,302 + ,130 + ,3870 + ,15 + ,8 + ,318 + ,150 + ,3755 + ,14 + ,4 + ,111 + ,80 + ,2155 + ,14.8 + ,4 + ,79 + ,58 + ,1825 + ,18.6 + ,4 + ,85 + ,70 + ,1945 + ,16.8 + ,8 + ,305 + ,145 + ,3880 + ,12.5 + ,8 + ,318 + ,145 + ,4140 + ,13.7 + ,6 + ,231 + ,105 + ,3425 + ,16.9 + ,6 + ,225 + ,100 + ,3630 + ,17.7 + ,8 + ,400 + ,180 + ,4220 + ,11.1 + ,8 + ,350 + ,170 + ,4165 + ,11.4 + ,8 + ,351 + ,149 + ,4335 + ,14.5 + ,4 + ,97 + ,78 + ,1940 + ,14.5 + ,4 + ,97 + ,75 + ,2265 + ,18.2 + ,4 + ,140 + ,89 + ,2755 + ,15.8 + ,4 + ,98 + ,83 + ,2075 + ,15.9 + ,4 + ,97 + ,67 + ,1985 + ,16.4 + ,6 + ,146 + ,97 + ,2815 + ,14.5 + ,4 + ,121 + ,110 + ,2600 + ,12.8 + ,4 + ,90 + ,48 + ,1985 + ,21.5 + ,4 + ,98 + ,66 + ,1800 + ,14.4 + ,4 + ,85 + ,70 + ,2070 + ,18.6 + ,8 + ,318 + ,140 + ,3735 + ,13.2 + ,8 + ,302 + ,139 + ,3570 + ,12.8 + ,6 + ,200 + ,95 + ,3155 + ,18.2 + ,6 + ,200 + ,85 + ,2965 + ,15.8 + ,6 + ,225 + ,100 + ,3430 + ,17.2 + ,6 + ,232 + ,90 + ,3210 + ,17.2 + ,6 + ,200 + ,85 + ,3070 + ,16.7 + ,6 + ,225 + ,110 + ,3620 + ,18.7 + ,8 + ,305 + ,145 + ,3425 + ,13.2 + ,6 + ,231 + ,165 + ,3445 + ,13.4 + ,8 + ,318 + ,140 + ,4080 + ,13.7 + ,4 + ,98 + ,68 + ,2155 + ,16.5 + ,4 + ,119 + ,97 + ,2300 + ,14.7 + ,4 + ,105 + ,75 + ,2230 + ,14.5 + ,4 + ,151 + ,85 + ,2855 + ,17.6 + ,5 + ,131 + ,103 + ,2830 + ,15.9 + ,6 + ,163 + ,125 + ,3140 + ,13.6 + ,6 + ,163 + ,133 + ,3410 + ,15.8 + ,4 + ,89 + ,71 + ,1990 + ,14.9 + ,4 + ,98 + ,68 + ,2135 + ,16.6 + ,6 + ,200 + ,85 + ,2990 + ,18.2 + ,4 + ,140 + ,88 + ,2890 + ,17.3 + ,6 + ,225 + ,110 + ,3360 + ,16.6 + ,8 + ,305 + ,130 + ,3840 + ,15.4 + ,8 + ,351 + ,138 + ,3955 + ,13.2 + ,8 + ,318 + ,135 + ,3830 + ,15.2 + ,8 + ,351 + ,142 + ,4054 + ,14.3 + ,8 + ,267 + ,125 + ,3605 + ,15 + ,4 + ,89 + ,71 + ,1925 + ,14 + ,4 + ,86 + ,65 + ,1975 + ,15.2 + ,4 + ,121 + ,80 + ,2670 + ,15 + ,4 + ,141 + ,71 + ,3190 + ,24.8 + ,8 + ,260 + ,90 + ,3420 + ,22.2 + ,4 + ,105 + ,70 + ,2150 + ,14.9 + ,4 + ,85 + ,65 + ,2020 + ,19.2 + ,4 + ,151 + ,90 + ,2670 + ,16 + ,6 + ,173 + ,115 + ,2595 + ,11.3 + ,4 + ,151 + ,90 + ,2556 + ,13.2 + ,4 + ,98 + ,76 + ,2144 + ,14.7 + ,4 + ,98 + ,70 + ,2120 + ,15.5 + ,4 + ,86 + ,65 + ,2019 + ,16.4 + ,4 + ,140 + ,88 + ,2870 + ,18.1 + ,4 + ,151 + ,90 + ,3003 + ,20.1 + ,4 + ,97 + ,78 + ,2188 + ,15.8 + ,4 + ,134 + ,90 + ,2711 + ,15.5 + ,4 + ,119 + ,92 + ,2434 + ,15 + ,4 + ,108 + ,75 + ,2265 + ,15.2 + ,4 + ,156 + ,105 + ,2800 + ,14.4 + ,4 + ,85 + ,65 + ,2110 + ,19.2 + ,5 + ,121 + ,67 + ,2950 + ,19.9 + ,4 + ,91 + ,67 + ,1850 + ,13.8 + ,4 + ,89 + ,62 + ,1845 + ,15.3 + ,4 + ,122 + ,88 + ,2500 + ,15.1 + ,4 + ,135 + ,84 + ,2490 + ,15.7 + ,4 + ,151 + ,84 + ,2635 + ,16.4 + ,6 + ,173 + ,110 + ,2725 + ,12.6 + ,4 + ,135 + ,84 + ,2385 + ,12.9 + ,4 + ,86 + ,64 + ,1875 + ,16.4 + ,4 + ,81 + ,60 + ,1760 + ,16.1 + ,4 + ,85 + ,65 + ,1975 + ,19.4 + ,4 + ,89 + ,62 + ,2050 + ,17.3 + ,4 + ,105 + ,63 + ,2215 + ,14.9 + ,4 + ,98 + ,65 + ,2045 + ,16.2 + ,4 + ,105 + ,74 + ,2190 + ,14.2 + ,4 + ,119 + ,100 + ,2615 + ,14.8 + ,4 + ,141 + ,80 + ,3230 + ,20.4 + ,6 + ,146 + ,120 + ,2930 + ,13.8 + ,6 + ,231 + ,110 + ,3415 + ,15.8 + ,6 + ,200 + ,88 + ,3060 + ,17.1 + ,6 + ,225 + ,85 + ,3465 + ,16.6 + ,4 + ,112 + ,88 + ,2640 + ,18.6 + ,4 + ,112 + ,88 + ,2395 + ,18 + ,4 + ,135 + ,84 + ,2525 + ,16 + ,4 + ,151 + ,90 + ,2735 + ,18 + ,4 + ,105 + ,74 + ,1980 + ,15.3 + ,4 + ,91 + ,68 + ,1970 + ,17.6 + ,4 + ,105 + ,63 + ,2125 + ,14.7 + ,4 + ,120 + ,88 + ,2160 + ,14.5 + ,4 + ,107 + ,75 + ,2205 + ,14.5 + ,4 + ,91 + ,67 + ,1965 + ,15.7 + ,6 + ,181 + ,110 + ,2945 + ,16.4 + ,6 + ,262 + ,85 + ,3015 + ,17 + ,4 + ,144 + ,96 + ,2665 + ,13.9 + ,4 + ,151 + ,90 + ,2950 + ,17.3 + ,4 + ,140 + ,86 + ,2790 + ,15.6 + ,4 + ,135 + ,84 + ,2295 + ,11.6 + ,4 + ,120 + ,79 + ,2625 + ,18.6) + ,dim=c(5 + ,240) + ,dimnames=list(c('cylinders' + ,'engine.displacement' + ,'horsepower' + ,'weight' + ,'acceleration ') + ,1:240)) > y <- array(NA,dim=c(5,240),dimnames=list(c('cylinders','engine.displacement','horsepower','weight','acceleration '),1:240)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par4 = 'no' > par3 = '3' > par2 = 'none' > par1 = '5' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Dr. Ian E. Holliday > #To cite this work: Ian E. Holliday, 2009, YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: > #Technical description: > library(party) Loading required package: survival Loading required package: splines Loading required package: grid Loading required package: modeltools Loading required package: stats4 Loading required package: coin Loading required package: mvtnorm Loading required package: zoo Loading required package: sandwich Loading required package: strucchange Loading required package: vcd Loading required package: MASS Loading required package: colorspace > library(Hmisc) Attaching package: 'Hmisc' The following object(s) are masked from 'package:survival': untangle.specials The following object(s) are masked from 'package:base': format.pval, round.POSIXt, trunc.POSIXt, units > par1 <- as.numeric(par1) > par3 <- as.numeric(par3) > x <- data.frame(t(y)) > is.data.frame(x) [1] TRUE > x <- x[!is.na(x[,par1]),] > k <- length(x[1,]) > n <- length(x[,1]) > colnames(x)[par1] [1] "acceleration." > x[,par1] [1] 11.5 11.0 10.5 10.0 8.5 10.0 10.0 8.0 10.0 15.0 15.5 20.5 17.5 17.5 12.5 [16] 14.0 15.0 18.5 14.5 14.0 15.5 15.5 12.0 13.0 12.0 12.0 19.0 15.0 14.0 14.0 [31] 14.5 19.0 19.0 20.5 17.0 16.5 12.0 13.5 13.0 11.0 13.5 12.5 13.5 14.0 16.0 [46] 14.5 18.0 16.0 14.5 15.0 13.0 11.5 14.5 12.5 12.0 13.0 11.0 11.0 16.5 18.0 [61] 16.5 16.0 14.0 12.5 15.0 19.5 16.5 18.5 14.0 13.0 9.5 15.5 14.0 11.0 14.0 [76] 11.0 16.5 16.0 16.5 21.0 17.0 18.0 14.0 14.5 16.0 15.5 15.5 14.5 19.0 14.5 [91] 14.0 15.0 16.0 16.0 19.5 11.5 14.0 13.5 21.0 19.0 19.0 13.5 12.0 17.0 16.0 [106] 13.5 16.5 14.5 15.0 17.0 13.5 17.5 16.9 14.9 15.3 13.0 13.9 12.8 14.5 17.6 [121] 22.2 22.1 17.7 16.2 17.8 17.0 16.4 15.7 13.2 16.7 12.1 15.0 14.0 14.8 18.6 [136] 16.8 12.5 13.7 16.9 17.7 11.1 11.4 14.5 14.5 18.2 15.8 15.9 16.4 14.5 12.8 [151] 21.5 14.4 18.6 13.2 12.8 18.2 15.8 17.2 17.2 16.7 18.7 13.2 13.4 13.7 16.5 [166] 14.7 14.5 17.6 15.9 13.6 15.8 14.9 16.6 18.2 17.3 16.6 15.4 13.2 15.2 14.3 [181] 15.0 14.0 15.2 15.0 24.8 22.2 14.9 19.2 16.0 11.3 13.2 14.7 15.5 16.4 18.1 [196] 20.1 15.8 15.5 15.0 15.2 14.4 19.2 19.9 13.8 15.3 15.1 15.7 16.4 12.6 12.9 [211] 16.4 16.1 19.4 17.3 14.9 16.2 14.2 14.8 20.4 13.8 15.8 17.1 16.6 18.6 18.0 [226] 16.0 18.0 15.3 17.6 14.7 14.5 14.5 15.7 16.4 17.0 13.9 17.3 15.6 11.6 18.6 > if (par2 == 'kmeans') { + cl <- kmeans(x[,par1], par3) + print(cl) + clm <- matrix(cbind(cl$centers,1:par3),ncol=2) + clm <- clm[sort.list(clm[,1]),] + for (i in 1:par3) { + cl$cluster[cl$cluster==clm[i,2]] <- paste('C',i,sep='') + } + cl$cluster <- as.factor(cl$cluster) + print(cl$cluster) + x[,par1] <- cl$cluster + } > if (par2 == 'quantiles') { + x[,par1] <- cut2(x[,par1],g=par3) + } > if (par2 == 'hclust') { + hc <- hclust(dist(x[,par1])^2, 'cen') + print(hc) + memb <- cutree(hc, k = par3) + dum <- c(mean(x[memb==1,par1])) + for (i in 2:par3) { + dum <- c(dum, mean(x[memb==i,par1])) + } + hcm <- matrix(cbind(dum,1:par3),ncol=2) + hcm <- hcm[sort.list(hcm[,1]),] + for (i in 1:par3) { + memb[memb==hcm[i,2]] <- paste('C',i,sep='') + } + memb <- as.factor(memb) + print(memb) + x[,par1] <- memb + } > if (par2=='equal') { + ed <- cut(as.numeric(x[,par1]),par3,labels=paste('C',1:par3,sep='')) + x[,par1] <- as.factor(ed) + } > table(x[,par1]) 8 8.5 9.5 10 10.5 11 11.1 11.3 11.4 11.5 11.6 12 12.1 12.5 12.6 12.8 1 1 1 4 1 6 1 1 1 3 1 6 1 5 1 3 12.9 13 13.2 13.4 13.5 13.6 13.7 13.8 13.9 14 14.2 14.3 14.4 14.5 14.7 14.8 1 6 5 1 7 1 2 2 2 14 1 1 2 16 3 2 14.9 15 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16 16.1 16.2 16.4 16.5 4 11 1 3 3 1 8 1 3 5 2 10 1 2 6 8 16.6 16.7 16.8 16.9 17 17.1 17.2 17.3 17.5 17.6 17.7 17.8 18 18.1 18.2 18.5 3 2 1 2 6 1 2 3 3 3 2 1 5 1 3 2 18.6 18.7 19 19.2 19.4 19.5 19.9 20.1 20.4 20.5 21 21.5 22.1 22.2 24.8 4 1 6 2 1 2 1 1 1 2 2 1 1 2 1 > colnames(x) [1] "cylinders" "engine.displacement" "horsepower" [4] "weight" "acceleration." > colnames(x)[par1] [1] "acceleration." > x[,par1] [1] 11.5 11.0 10.5 10.0 8.5 10.0 10.0 8.0 10.0 15.0 15.5 20.5 17.5 17.5 12.5 [16] 14.0 15.0 18.5 14.5 14.0 15.5 15.5 12.0 13.0 12.0 12.0 19.0 15.0 14.0 14.0 [31] 14.5 19.0 19.0 20.5 17.0 16.5 12.0 13.5 13.0 11.0 13.5 12.5 13.5 14.0 16.0 [46] 14.5 18.0 16.0 14.5 15.0 13.0 11.5 14.5 12.5 12.0 13.0 11.0 11.0 16.5 18.0 [61] 16.5 16.0 14.0 12.5 15.0 19.5 16.5 18.5 14.0 13.0 9.5 15.5 14.0 11.0 14.0 [76] 11.0 16.5 16.0 16.5 21.0 17.0 18.0 14.0 14.5 16.0 15.5 15.5 14.5 19.0 14.5 [91] 14.0 15.0 16.0 16.0 19.5 11.5 14.0 13.5 21.0 19.0 19.0 13.5 12.0 17.0 16.0 [106] 13.5 16.5 14.5 15.0 17.0 13.5 17.5 16.9 14.9 15.3 13.0 13.9 12.8 14.5 17.6 [121] 22.2 22.1 17.7 16.2 17.8 17.0 16.4 15.7 13.2 16.7 12.1 15.0 14.0 14.8 18.6 [136] 16.8 12.5 13.7 16.9 17.7 11.1 11.4 14.5 14.5 18.2 15.8 15.9 16.4 14.5 12.8 [151] 21.5 14.4 18.6 13.2 12.8 18.2 15.8 17.2 17.2 16.7 18.7 13.2 13.4 13.7 16.5 [166] 14.7 14.5 17.6 15.9 13.6 15.8 14.9 16.6 18.2 17.3 16.6 15.4 13.2 15.2 14.3 [181] 15.0 14.0 15.2 15.0 24.8 22.2 14.9 19.2 16.0 11.3 13.2 14.7 15.5 16.4 18.1 [196] 20.1 15.8 15.5 15.0 15.2 14.4 19.2 19.9 13.8 15.3 15.1 15.7 16.4 12.6 12.9 [211] 16.4 16.1 19.4 17.3 14.9 16.2 14.2 14.8 20.4 13.8 15.8 17.1 16.6 18.6 18.0 [226] 16.0 18.0 15.3 17.6 14.7 14.5 14.5 15.7 16.4 17.0 13.9 17.3 15.6 11.6 18.6 > if (par2 == 'none') { + m <- ctree(as.formula(paste(colnames(x)[par1],' ~ .',sep='')),data = x) + } > > #Note: the /var/www/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/rcomp/createtable") > > if (par2 != 'none') { + m <- ctree(as.formula(paste('as.factor(',colnames(x)[par1],') ~ .',sep='')),data = x) + if (par4=='yes') { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'10-Fold Cross Validation',3+2*par3,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'',1,TRUE) + a<-table.element(a,'Prediction (training)',par3+1,TRUE) + a<-table.element(a,'Prediction (testing)',par3+1,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Actual',1,TRUE) + for (jjj in 1:par3) a<-table.element(a,paste('C',jjj,sep=''),1,TRUE) + a<-table.element(a,'CV',1,TRUE) + for (jjj in 1:par3) a<-table.element(a,paste('C',jjj,sep=''),1,TRUE) + a<-table.element(a,'CV',1,TRUE) + a<-table.row.end(a) + for (i in 1:10) { + ind <- sample(2, nrow(x), replace=T, prob=c(0.9,0.1)) + m.ct <- ctree(as.formula(paste('as.factor(',colnames(x)[par1],') ~ .',sep='')),data =x[ind==1,]) + if (i==1) { + m.ct.i.pred <- predict(m.ct, newdata=x[ind==1,]) + m.ct.i.actu <- x[ind==1,par1] + m.ct.x.pred <- predict(m.ct, newdata=x[ind==2,]) + m.ct.x.actu <- x[ind==2,par1] + } else { + m.ct.i.pred <- c(m.ct.i.pred,predict(m.ct, newdata=x[ind==1,])) + m.ct.i.actu <- c(m.ct.i.actu,x[ind==1,par1]) + m.ct.x.pred <- c(m.ct.x.pred,predict(m.ct, newdata=x[ind==2,])) + m.ct.x.actu <- c(m.ct.x.actu,x[ind==2,par1]) + } + } + print(m.ct.i.tab <- table(m.ct.i.actu,m.ct.i.pred)) + numer <- 0 + for (i in 1:par3) { + print(m.ct.i.tab[i,i] / sum(m.ct.i.tab[i,])) + numer <- numer + m.ct.i.tab[i,i] + } + print(m.ct.i.cp <- numer / sum(m.ct.i.tab)) + print(m.ct.x.tab <- table(m.ct.x.actu,m.ct.x.pred)) + numer <- 0 + for (i in 1:par3) { + print(m.ct.x.tab[i,i] / sum(m.ct.x.tab[i,])) + numer <- numer + m.ct.x.tab[i,i] + } + print(m.ct.x.cp <- numer / sum(m.ct.x.tab)) + for (i in 1:par3) { + a<-table.row.start(a) + a<-table.element(a,paste('C',i,sep=''),1,TRUE) + for (jjj in 1:par3) a<-table.element(a,m.ct.i.tab[i,jjj]) + a<-table.element(a,round(m.ct.i.tab[i,i]/sum(m.ct.i.tab[i,]),4)) + for (jjj in 1:par3) a<-table.element(a,m.ct.x.tab[i,jjj]) + a<-table.element(a,round(m.ct.x.tab[i,i]/sum(m.ct.x.tab[i,]),4)) + a<-table.row.end(a) + } + a<-table.row.start(a) + a<-table.element(a,'Overall',1,TRUE) + for (jjj in 1:par3) a<-table.element(a,'-') + a<-table.element(a,round(m.ct.i.cp,4)) + for (jjj in 1:par3) a<-table.element(a,'-') + a<-table.element(a,round(m.ct.x.cp,4)) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/www/rcomp/tmp/1gf1g1292338110.tab") + } + } > m Conditional inference tree with 9 terminal nodes Response: acceleration. Inputs: cylinders, engine.displacement, horsepower, weight Number of observations: 240 1) horsepower <= 110; criterion = 1, statistic = 111.143 2) horsepower <= 61; criterion = 1, statistic = 14.76 3)* weights = 9 2) horsepower > 61 4) weight <= 2830; criterion = 0.999, statistic = 13.066 5) horsepower <= 72; criterion = 1, statistic = 18.584 6)* weights = 33 5) horsepower > 72 7)* weights = 72 4) weight > 2830 8) horsepower <= 90; criterion = 0.992, statistic = 9.449 9)* weights = 20 8) horsepower > 90 10) weight <= 3425; criterion = 0.996, statistic = 10.778 11)* weights = 20 10) weight > 3425 12)* weights = 10 1) horsepower > 110 13) horsepower <= 158; criterion = 1, statistic = 18.155 14)* weights = 49 13) horsepower > 158 15) engine.displacement <= 360; criterion = 0.988, statistic = 8.749 16)* weights = 13 15) engine.displacement > 360 17)* weights = 14 > postscript(file="/var/www/rcomp/tmp/2gf1g1292338110.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(m) > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/3gf1g1292338110.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,par1] ~ as.factor(where(m)),main='Response by Terminal Node',xlab='Terminal Node',ylab='Response') > dev.off() null device 1 > if (par2 == 'none') { + forec <- predict(m) + result <- as.data.frame(cbind(x[,par1],forec,x[,par1]-forec)) + colnames(result) <- c('Actuals','Forecasts','Residuals') + print(result) + } Actuals Forecasts Residuals 1 11.5 12.64615 -1.14615385 2 11.0 13.58776 -2.58775510 3 10.5 13.58776 -3.08775510 4 10.0 10.72143 -0.72142857 5 8.5 10.72143 -2.22142857 6 10.0 10.72143 -0.72142857 7 10.0 10.72143 -0.72142857 8 8.0 12.64615 -4.64615385 9 10.0 10.72143 -0.72142857 10 15.0 15.28750 -0.28750000 11 15.5 15.28750 0.21250000 12 20.5 19.61111 0.88888889 13 17.5 15.28750 2.21250000 14 17.5 15.28750 2.21250000 15 12.5 13.58776 -1.08775510 16 14.0 12.64615 1.35384615 17 15.0 12.64615 2.35384615 18 18.5 12.64615 5.85384615 19 14.5 15.28750 -0.78750000 20 14.0 15.28750 -1.28750000 21 15.5 16.04500 -0.54500000 22 15.5 16.04500 -0.54500000 23 12.0 12.64615 -0.64615385 24 13.0 13.58776 -0.58775510 25 12.0 10.72143 1.27857143 26 12.0 10.72143 1.27857143 27 19.0 16.78485 2.21515152 28 15.0 16.04500 -1.04500000 29 14.0 15.28750 -1.28750000 30 14.0 15.28750 -1.28750000 31 14.5 15.28750 -0.78750000 32 19.0 16.78485 2.21515152 33 19.0 19.61111 -0.61111111 34 20.5 16.78485 3.71515152 35 17.0 15.28750 1.71250000 36 16.5 15.28750 1.21250000 37 12.0 12.64615 -0.64615385 38 13.5 13.58776 -0.08775510 39 13.0 13.58776 -0.58775510 40 11.0 10.72143 0.27857143 41 13.5 13.58776 -0.08775510 42 12.5 10.72143 1.77857143 43 13.5 15.28750 -1.78750000 44 14.0 13.58776 0.41224490 45 16.0 13.58776 2.41224490 46 14.5 13.58776 0.91224490 47 18.0 15.28750 2.71250000 48 16.0 15.28750 0.71250000 49 14.5 15.28750 -0.78750000 50 15.0 15.28750 -0.28750000 51 13.0 12.64615 0.35384615 52 11.5 13.58776 -2.08775510 53 14.5 13.58776 0.91224490 54 12.5 13.58776 -1.08775510 55 12.0 13.58776 -1.58775510 56 13.0 13.58776 -0.58775510 57 11.0 10.72143 0.27857143 58 11.0 10.72143 0.27857143 59 16.5 16.04500 0.45500000 60 18.0 16.04500 1.95500000 61 16.5 18.34500 -1.84500000 62 16.0 16.04500 -0.04500000 63 14.0 13.58776 0.41224490 64 12.5 12.64615 -0.14615385 65 15.0 15.28750 -0.28750000 66 19.5 16.78485 2.71515152 67 16.5 15.28750 1.21250000 68 18.5 15.28750 3.21250000 69 14.0 15.28750 -1.28750000 70 13.0 13.58776 -0.58775510 71 9.5 10.72143 -1.22142857 72 15.5 15.28750 0.21250000 73 14.0 15.28750 -1.28750000 74 11.0 13.58776 -2.58775510 75 14.0 15.28750 -1.28750000 76 11.0 12.64615 -1.64615385 77 16.5 16.04500 0.45500000 78 16.0 16.04500 -0.04500000 79 16.5 15.28750 1.21250000 80 21.0 16.78485 4.21515152 81 17.0 18.15000 -1.15000000 82 18.0 18.15000 -0.15000000 83 14.0 13.58776 0.41224490 84 14.5 13.58776 0.91224490 85 16.0 13.58776 2.41224490 86 15.5 13.58776 1.91224490 87 15.5 16.78485 -1.28484848 88 14.5 15.28750 -0.78750000 89 19.0 19.61111 -0.61111111 90 14.5 15.28750 -0.78750000 91 14.0 15.28750 -1.28750000 92 15.0 15.28750 -0.28750000 93 16.0 16.78485 -0.78484848 94 16.0 16.04500 -0.04500000 95 19.5 18.34500 1.15500000 96 11.5 10.72143 0.77857143 97 14.0 13.58776 0.41224490 98 13.5 13.58776 -0.08775510 99 21.0 18.15000 2.85000000 100 19.0 18.15000 0.85000000 101 19.0 18.15000 0.85000000 102 13.5 16.04500 -2.54500000 103 12.0 13.58776 -1.58775510 104 17.0 15.28750 1.71250000 105 16.0 16.04500 -0.04500000 106 13.5 15.28750 -1.78750000 107 16.5 16.78485 -0.28484848 108 14.5 16.04500 -1.54500000 109 15.0 15.28750 -0.28750000 110 17.0 18.34500 -1.34500000 111 13.5 13.58776 -0.08775510 112 17.5 19.61111 -2.11111111 113 16.9 15.28750 1.61250000 114 14.9 15.28750 -0.38750000 115 15.3 15.28750 0.01250000 116 13.0 13.58776 -0.58775510 117 13.9 13.58776 0.31224490 118 12.8 13.58776 -0.78775510 119 14.5 16.04500 -1.54500000 120 17.6 18.34500 -0.74500000 121 22.2 19.61111 2.58888889 122 22.1 19.61111 2.48888889 123 17.7 18.15000 -0.45000000 124 16.2 18.15000 -1.95000000 125 17.8 16.04500 1.75500000 126 17.0 16.78485 0.21515152 127 16.4 15.28750 1.11250000 128 15.7 16.04500 -0.34500000 129 13.2 13.58776 -0.38775510 130 16.7 13.58776 3.11224490 131 12.1 12.64615 -0.54615385 132 15.0 13.58776 1.41224490 133 14.0 13.58776 0.41224490 134 14.8 15.28750 -0.48750000 135 18.6 19.61111 -1.01111111 136 16.8 16.78485 0.01515152 137 12.5 13.58776 -1.08775510 138 13.7 13.58776 0.11224490 139 16.9 16.04500 0.85500000 140 17.7 18.15000 -0.45000000 141 11.1 10.72143 0.37857143 142 11.4 12.64615 -1.24615385 143 14.5 13.58776 0.91224490 144 14.5 15.28750 -0.78750000 145 18.2 15.28750 2.91250000 146 15.8 15.28750 0.51250000 147 15.9 15.28750 0.61250000 148 16.4 16.78485 -0.38484848 149 14.5 15.28750 -0.78750000 150 12.8 15.28750 -2.48750000 151 21.5 19.61111 1.88888889 152 14.4 16.78485 -2.38484848 153 18.6 16.78485 1.81515152 154 13.2 13.58776 -0.38775510 155 12.8 13.58776 -0.78775510 156 18.2 16.04500 2.15500000 157 15.8 18.34500 -2.54500000 158 17.2 18.15000 -0.95000000 159 17.2 18.34500 -1.14500000 160 16.7 18.34500 -1.64500000 161 18.7 18.15000 0.55000000 162 13.2 13.58776 -0.38775510 163 13.4 12.64615 0.75384615 164 13.7 13.58776 0.11224490 165 16.5 16.78485 -0.28484848 166 14.7 15.28750 -0.58750000 167 14.5 15.28750 -0.78750000 168 17.6 18.34500 -0.74500000 169 15.9 15.28750 0.61250000 170 13.6 13.58776 0.01224490 171 15.8 13.58776 2.21224490 172 14.9 16.78485 -1.88484848 173 16.6 16.78485 -0.18484848 174 18.2 18.34500 -0.14500000 175 17.3 18.34500 -1.04500000 176 16.6 16.04500 0.55500000 177 15.4 13.58776 1.81224490 178 13.2 13.58776 -0.38775510 179 15.2 13.58776 1.61224490 180 14.3 13.58776 0.71224490 181 15.0 13.58776 1.41224490 182 14.0 16.78485 -2.78484848 183 15.2 16.78485 -1.58484848 184 15.0 15.28750 -0.28750000 185 24.8 18.34500 6.45500000 186 22.2 18.34500 3.85500000 187 14.9 16.78485 -1.88484848 188 19.2 16.78485 2.41515152 189 16.0 15.28750 0.71250000 190 11.3 13.58776 -2.28775510 191 13.2 15.28750 -2.08750000 192 14.7 15.28750 -0.58750000 193 15.5 16.78485 -1.28484848 194 16.4 16.78485 -0.38484848 195 18.1 18.34500 -0.24500000 196 20.1 18.34500 1.75500000 197 15.8 15.28750 0.51250000 198 15.5 15.28750 0.21250000 199 15.0 15.28750 -0.28750000 200 15.2 15.28750 -0.08750000 201 14.4 15.28750 -0.88750000 202 19.2 16.78485 2.41515152 203 19.9 18.34500 1.55500000 204 13.8 16.78485 -2.98484848 205 15.3 16.78485 -1.48484848 206 15.1 15.28750 -0.18750000 207 15.7 15.28750 0.41250000 208 16.4 15.28750 1.11250000 209 12.6 15.28750 -2.68750000 210 12.9 15.28750 -2.38750000 211 16.4 16.78485 -0.38484848 212 16.1 19.61111 -3.51111111 213 19.4 16.78485 2.61515152 214 17.3 16.78485 0.51515152 215 14.9 16.78485 -1.88484848 216 16.2 16.78485 -0.58484848 217 14.2 15.28750 -1.08750000 218 14.8 15.28750 -0.48750000 219 20.4 18.34500 2.05500000 220 13.8 13.58776 0.21224490 221 15.8 16.04500 -0.24500000 222 17.1 18.34500 -1.24500000 223 16.6 18.34500 -1.74500000 224 18.6 15.28750 3.31250000 225 18.0 15.28750 2.71250000 226 16.0 15.28750 0.71250000 227 18.0 15.28750 2.71250000 228 15.3 15.28750 0.01250000 229 17.6 16.78485 0.81515152 230 14.7 16.78485 -2.08484848 231 14.5 15.28750 -0.78750000 232 14.5 15.28750 -0.78750000 233 15.7 16.78485 -1.08484848 234 16.4 16.04500 0.35500000 235 17.0 18.34500 -1.34500000 236 13.9 15.28750 -1.38750000 237 17.3 18.34500 -1.04500000 238 15.6 15.28750 0.31250000 239 11.6 15.28750 -3.68750000 240 18.6 15.28750 3.31250000 > if (par2 != 'none') { + print(cbind(as.factor(x[,par1]),predict(m))) + myt <- table(as.factor(x[,par1]),predict(m)) + print(myt) + } > postscript(file="/var/www/rcomp/tmp/49oji1292338110.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > if(par2=='none') { + op <- par(mfrow=c(2,2)) + plot(density(result$Actuals),main='Kernel Density Plot of Actuals') + plot(density(result$Residuals),main='Kernel Density Plot of Residuals') + plot(result$Forecasts,result$Actuals,main='Actuals versus Predictions',xlab='Predictions',ylab='Actuals') + plot(density(result$Forecasts),main='Kernel Density Plot of Predictions') + par(op) + } > if(par2!='none') { + plot(myt,main='Confusion Matrix',xlab='Actual',ylab='Predicted') + } > dev.off() null device 1 > if (par2 == 'none') { + detcoef <- cor(result$Forecasts,result$Actuals) + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goodness of Fit',2,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Correlation',1,TRUE) + a<-table.element(a,round(detcoef,4)) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'R-squared',1,TRUE) + a<-table.element(a,round(detcoef*detcoef,4)) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'RMSE',1,TRUE) + a<-table.element(a,round(sqrt(mean((result$Residuals)^2)),4)) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/www/rcomp/tmp/55ggr1292338110.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Actuals, Predictions, and Residuals',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'#',header=TRUE) + a<-table.element(a,'Actuals',header=TRUE) + a<-table.element(a,'Forecasts',header=TRUE) + a<-table.element(a,'Residuals',header=TRUE) + a<-table.row.end(a) + for (i in 1:length(result$Actuals)) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,result$Actuals[i]) + a<-table.element(a,result$Forecasts[i]) + a<-table.element(a,result$Residuals[i]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/www/rcomp/tmp/6x7yu1292338110.tab") + } > if (par2 != 'none') { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Confusion Matrix (predicted in columns / actuals in rows)',par3+1,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'',1,TRUE) + for (i in 1:par3) { + a<-table.element(a,paste('C',i,sep=''),1,TRUE) + } + a<-table.row.end(a) + for (i in 1:par3) { + a<-table.row.start(a) + a<-table.element(a,paste('C',i,sep=''),1,TRUE) + for (j in 1:par3) { + a<-table.element(a,myt[i,j]) + } + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/www/rcomp/tmp/718e01292338110.tab") + } > > try(system("convert tmp/2gf1g1292338110.ps tmp/2gf1g1292338110.png",intern=TRUE)) character(0) > try(system("convert tmp/3gf1g1292338110.ps tmp/3gf1g1292338110.png",intern=TRUE)) character(0) > try(system("convert tmp/49oji1292338110.ps tmp/49oji1292338110.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 3.840 0.780 4.629