R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(41.85,41.75,41.75,41.75,41.58,41.61,41.42,41.37,41.37,41.33,41.37,41.34,41.33,41.29,41.29,41.27,41.04,40.90,40.89,40.72,40.72,40.58,40.24,40.07,40.12,40.10,40.10,40.08,40.06,39.99,40.05,39.66,39.66,39.67,39.56,39.64,39.73,39.70,39.70,39.68,39.76,40.00,39.96,40.01,40.01,40.01,40.00,39.91,39.86,39.79,39.79,39.80,39.64,39.55,39.36,39.28) > par3 = 'additive' > par2 = 'Triple' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2010), Exponential Smoothing (v1.0.4) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_exponentialsmoothing.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) > if (par2 == 'Single') K <- 1 > if (par2 == 'Double') K <- 2 > if (par2 == 'Triple') K <- par1 > nx <- length(x) > nxmK <- nx - K > x <- ts(x, frequency = par1) > if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F) > if (par2 == 'Double') fit <- HoltWinters(x, gamma=F) > if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3) > fit Holt-Winters exponential smoothing with trend and additive seasonal component. Call: HoltWinters(x = x, seasonal = par3) Smoothing parameters: alpha: 1 beta : 0 gamma: 0.1949724 Coefficients: [,1] a 39.403645833 b -0.052489802 s1 -0.085312500 s2 -0.086145833 s3 -0.003645833 s4 0.018437500 s5 0.060104167 s6 0.069270833 s7 0.123437500 s8 0.161770833 s9 0.010104167 s10 -0.029895833 s11 -0.114479167 s12 -0.123645833 > myresid <- x - fit$fitted[,'xhat'] > postscript(file="/var/www/html/rcomp/tmp/123wr1292767542.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > op <- par(mfrow=c(2,1)) > plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing') > plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors') > par(op) > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/2p9661292767542.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > p <- predict(fit, par1, prediction.interval=TRUE) > np <- length(p[,1]) > plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/3p9661292767542.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > op <- par(mfrow = c(2,2)) > acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF') > spectrum(myresid,main='Residals Periodogram') > cpgram(myresid,main='Residal Cumulative Periodogram') > qqnorm(myresid,main='Residual Normal QQ Plot') > qqline(myresid) > par(op) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'Value',header=TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'alpha',header=TRUE) > a<-table.element(a,fit$alpha) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'beta',header=TRUE) > a<-table.element(a,fit$beta) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'gamma',header=TRUE) > a<-table.element(a,fit$gamma) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/43j4w1292767542.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'t',header=TRUE) > a<-table.element(a,'Observed',header=TRUE) > a<-table.element(a,'Fitted',header=TRUE) > a<-table.element(a,'Residuals',header=TRUE) > a<-table.row.end(a) > for (i in 1:nxmK) { + a<-table.row.start(a) + a<-table.element(a,i+K,header=TRUE) + a<-table.element(a,x[i+K]) + a<-table.element(a,fit$fitted[i,'xhat']) + a<-table.element(a,myresid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/5ea301292767542.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'t',header=TRUE) > a<-table.element(a,'Forecast',header=TRUE) > a<-table.element(a,'95% Lower Bound',header=TRUE) > a<-table.element(a,'95% Upper Bound',header=TRUE) > a<-table.row.end(a) > for (i in 1:np) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,p[i,'fit']) + a<-table.element(a,p[i,'lwr']) + a<-table.element(a,p[i,'upr']) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/60t251292767542.tab") > > try(system("convert tmp/123wr1292767542.ps tmp/123wr1292767542.png",intern=TRUE)) character(0) > try(system("convert tmp/2p9661292767542.ps tmp/2p9661292767542.png",intern=TRUE)) character(0) > try(system("convert tmp/3p9661292767542.ps tmp/3p9661292767542.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.777 0.485 1.836